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e Why do we think Dark Matter (DM) interacts with Standard Model (SM)?

e The only clue of DM and SM having interactions: Coincidence Problem.

Atoms
4.6%

Dark

Energy
72%
Dark ’
Matter
23%

TODAY

Image Credit: WMAP

e This coincidence should be taken into account in all DM studies.

e Search the parameter space of models that explain this.

e The only existing full solution to the energy density coincidence problem: A
confining dark sector [1306.4676].
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Executive Summary

We study the direct detection of the most minimal confining dark sector:

This model was presumed ruled out by direct detection searches!

New motivated target for both colliders and direct detection searches!
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e Direct Detection of Minimal Confining Dark Sectors
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e Portal: SM electroweak gauge bosons.
e Consider a confining gauge group SU(/V.) with Ny flavors of vector-like quarks.
e Assume the quarks form an Ng-multiplet of SM SU(2).

Field | SU(N.) | SU(2); || SU(Ny) | U1
q O Ny U 1/]\7C
T | O | N g [ -1/N,
L 1G,u1/Ga 0 aXGpVéa -—lp = =
D) - Z a uv - XQ a uv + Zq q - quqv

This is WIMP’s next of kin!
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Dark quarks charged under electromagnetism.
The lightest baryon is stable.

If neutral: a viable dark matter candidate.
Searched for at direct detection experiments.
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Dark quarks charged under electromagnetism.

The lightest baryon is stable.
If neutral: a viable dark matter candidate.

Searched for at direct detection experiments.
e Naive dim. analysis: severe bounds due to
electromagnetic moments.
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Dark quarks charged under electromagnetism.
The lightest baryon is stable.
If neutral: a viable dark matter candidate.

Searched for at direct detection experiments.
e Naive dim. analysis: severe bounds due to
electromagnetic moments.
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e Dark quarks charged under electromagnetism. Mass Scale Interaction Type
e The lightest baryon is stable.
. . 10 —~ o -
e If neutral: a viable dark matter candidate. ~10=GeV el 2
e Searched for at direct detection experiments.
e Naive dim. analysis: severe bounds due to
electromagnetic moments.
6 (a Electromagnetic Moments
~10° GeV Dimensional Analysis
X X
/')/

~10%> GeV Electroweak Loops
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‘H swaps dark quarks of opposite charges.
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We will show a symmetry forbids the electromagnetic moments.

H :q; = Sijq5, with S =exp (inJo) = (—1)Qi+j5Q,,,Qﬁ
‘H swaps dark quarks of opposite charges.
H : Xem — CXsmC, with Xgqn : any electroweak gauge field

(Insensitive to H’s action on the rest of SM.)
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Field | SU(N.) | SU(2). || SU(Ny) | U(1)p

q O Ny O 1/N,
q U] Ny ] -1/N,
We will show a symmetry forbids the electromagnetic moments.
CI1 0 0 1 Cll qfl
Nf =3. H: qo — 10 -1 0 qo =1—9 |,
q*l ]- 0 0 qfl ql
T B I e I BLUVERN (P et
q-1/2 0 1 0 0 q-1/2 qi/2
9-3/2 -1 0 00 q-3/2 —q3/2

‘H is a symmetry of the UV theory.
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Field | SU(N.) | SU(2). || SU(Ny) | U(1)p

q 0 N; 0 1/N.,
q 0 N; 0 | -1/N.
We will show a symmetry forbids the electromagnetic moments.
X X
v
N N

The relevant operators don’t respect the H-parity.

The diagram does not exist!
They don’t give rise to a signal in direct detection searches.
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H-Parity and Direct Detection

Direct detection bounds substantially
alleviated.

‘H-Parity revives the most minimal confining
dark sector!

Target for future experiments: Direct
Detection and Colliders.

This result applies to models with any values
of N¢, N, Reps., DM masses, ...
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e We identified a new parity in the 1000
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N
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THANK YOU!
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Evidence for Dark Matter

Image Credit: Chanda X-ray Observatory
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Why Confining Dark Sectors?

e SM has confinement; why not the
dark side of the universe?

e Stabilizing DM a la SM.
e New viable dark matter masses, with
rich phenomenology.
e Avenue for studying confinement. @ @
e Possible new CP violation and
out-of-equilibrium dynamics.
e The coincidence problem motivates @
studying confining dark sections -

even beyond the abundance
calculation.

14 /11



Intro. WIMP’s Next of Kin H-Parity and Direct Detection Summary Back Up

Table of All EM Moment Operators

Direct Detection Constraints
(Naive Estimates)

H

Transformation Diagram Operators

magnetic dipole moment

X X . . . .
H-odd T electric dipole Ipomcnt (e.g. magnetic dipole moment)
v charge radius my, 2, 50 TeV
N N anapole moment
X X
v &2y polarizability m, 2 O200) GeV
H-even | , Z Z N

X X
W Y, W . DM in SU(2
N— N electroweak (i.e. . in 8U(2),
X ——s X loops Triplet)
p my 2 200 GeV
w W
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Polarizability

Operator | Dim. | WC and Name
XXEM 7 Polarizability
&'9F"™F,, | 6 | Polarizability

H: XXF"F,, — xXxF*"F,,, H: ¢'¢F*F,, — ¢'¢F*F,,

X X

N N

e T'wo-nucleon form factor undetermined.

e Estimated bounds: O(100) GeV
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Baryon Masses

M=AMo+M+) [ S5E 00 (b — SE58) + e (b — S5E)(@:Q5)

— mg mg
1>
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2
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Baryon’s Rep. under SU(2), - Different (N., Ny)

L owest—gpm &p ectra:

utral
(Ne Np)| Sy, Mu|ﬁple+g Q&ﬁ/m\s r\\:mton&
,”769)|(S & |3 éB/BC7
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(5,5) o909 @“7497@7 75 2l
6505650503036 |
(5 3) 7503 |S 3
(4,9) |[I2eqe997eSeSe]a| 50 §
(4,4) T650S @] 20 H
(4. 32) Se | 6 2
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Symmetry to a Theorist

Is the naive dim. analysis reliable?
Partons randomly-distributed? Or there is some order?
The right language: symmetry!

Symmetry helps us see cancellations that are not conspicuously manifest.

Back Up
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‘H in the UV Theory

S { Ga — Sabp with S = exp (inJ3) = (—1)Qa+k5QaﬁQb

E|a — Slbqb
: S i=2
Ty = )
S JS i {—JZ Z: 173,
c ) . I/Vll,,i =2
Wu,i:CWM7ZC - {W,u,i 1=1,3.

= H(QY' T QW) = (QSHFIUSQ)CW,iaC
= QystJesQwy,
Q"' QW
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H=Csm®Sy, S= T2 G = 1gm ® C, Sy
® gi = g ° qi — £q
o Mesons — Mesons e Mesons — Mesons
e Baryons — Baryons e Baryons — Anti-baryons
e Utility: Zero Baryon EM Moments o Utility: Mesons Stable

Broken by: SM EW Interactions e Broken by: Dim. 5 Operators
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‘H-Parity Violation
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Mass Spectrum and Model-Dependent Nuances

Further nuances in connecting to direct detection signals.

Transition moments possible: inelastic scattering.

Lightest baryon is not guaranteed to be neutral!

SU(2)r, representation relevant for direct detection.

X X
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Direct Detection
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Indirect Detection

T
Mock NLL H.E.S.S. Limits 10-%
10-25 | Einasto Profile
F Prediction 1072
- Limit
z : = w0
8 1om) & e |
9 ; N 10~2°Ft Mock H.E.S.S. Limits 0
/g g /S = Prediction «E
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10727 L T_ﬁ
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o
=
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Indirect detection signal can be reduced in asymmetric models.
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Searching for WIMP’s Next of Kin

Quark are charged under SM electroweak group.

Ubiquitously produced at a future MuC.

(Future of the energy frontier?)
Potential LLP signals.
e Upcoming paper!
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