

00

DIRECTLY DETECTING THE IRREDUCIBLE MILLICHARGED BACKGROUND

WHERE STHENEW PHYSICS?

WHAT'S HAPPENING ON THE DARK SIDE?

WHAT'S THE DEAL WITH WHAT'S HAPPENING THE STANDARD MODEL? **ON THE DARK SIDE?**

Neutrino masses? Strong CP problem? Hierarchy problem?

Experimental anomalies?

NECESSITATE UV COMPLETION!

THERE ARE PROBABLY NEW PARTICLES BEYOND THE STANDARD MODEL AND THESE NEW PARICLES MAY BE DARK MATTER

DETERMINE PARTICLE TYPE

DETERMINE PARTICLE TYPE

DETERMINE INTERACTION TYPE

DETERMINE PARTICLE TYPE

DETERMINE INTERACTION TYPE

ONLY A LIMITED NUMBER OF RENORMALIZABLE OPERATORS!

DETERMINE PARTICLE TYPE

DETERMINE INTERACTION TYPE

ONLY A LIMITED NUMBER OF RENORMALIZABLE OPERATORS!

- 1. Vector Portal
- 2. Axion Portal
- 3. Neutrino Portal
- 4. Scalar Portal

DETERMINE PARTICLE TYPE

DETERMINE INTERACTION TYPE

ONLY A LIMITED NUMBER OF RENORMALIZABLE OPERATORS!

1. Vector Portal

 $\frac{\kappa}{2} F_{\mu\nu} F^{\mu\nu} + q_{\chi} A'_{\mu} \bar{\chi} \delta^{\mu} \chi$

DETERMINE PARTICLE TYPE

DETERMINE INTERACTION TYPE

ONLY A LIMITED NUMBER OF RENORMALIZABLE OPERATORS!

1. Vector Portal

 $\frac{\kappa}{2} F_{\mu\nu} F^{\mu\nu} + q_{\chi} A'_{\mu} \bar{\chi} g^{\mu} \chi$

Dark U(1) that mixes with the SM U(1)

DETERMINE PARTICLE TYPE

DETERMINE INTERACTION TYPE

ONLY A LIMITED NUMBER OF **RENORMALIZABLE OPERATORS!**

1. Vector Portal

 $\frac{\kappa}{2} F_{\mu\nu} F^{\mu\nu} + q_{\chi} A'_{\mu} \bar{\chi} g^{\mu} \chi$

Dark U(1)that mixes with the SM U(1)

Additional particles charged under this U(1)

VECTOR PORTAL

BSM SECTOR

VECTOR PORTAL

BSM SECTOR

BSM SECTOR

MILICHARGED* PARTICLE (MCP)

IF THE DARK PHOTON IS LIGHT, FIELD REDEFINITIONS **RESULT IN AN** EFFECTIVE MILLICHARGE

3

Effective Millicharge

*nothing milli about millicharged

1. HOW DO MCPS IMPACT OBSERVABLES?

2. REGARDLESS OF WHETHER MCPS ARE DARK MATTER, CAN WE USE THE DARK MATTER EXPERIMENTAL PROGRAM TO LOOK FOR THEM?

1 HOW DO MCPS IMPACT OBSERVABLES?

2. REGARDLESS OF WHETHER MCPS ARE DARK MATTER, CAN WE USE THE DARK MATTER EXPERIMENTAL PROGRAM TO LOOK FOR THEM?

MCPS IN ASTROPHYSICAL SYSTEMS LIGHT MCPS CAN BE PRODUCED IN STARS THROUGH <u>PLASMON</u> DECAYS

B B DISPERSES LIKE MASSIVE PARTICLE A $TT_{T} = \omega_{p}^{2} = \omega_{z}^{2} - k^{2}$ $TT_{L} = \omega_{p}^{2} = \omega_{z}^{2}$

DISPERSES LIKE A MASSIVE PARTICLE

DISPERSES LIKE A MASSIVE PARTICLE

 $m_{\gamma,\mathrm{eff}}^2 \sim$

PLASMONS CAN DECAY

HYDROGEN BURNING ENVELOP DEGENERATE HELIUM CORE

RED GIANT BRANCH

RED GIANT BRANCH

RED GIANT BRANCH

STAR BECOMES BRIGHTER AND REDDER

RED GIANT BRANCH

STAR BECOMES HELIUM FLASH BRIGHTER AND REDDER (TIP OF THE RED GIANT BRANCH)

MCPS IN ASTROPHYSICAL SYSTEMS ENERGY LOSS THROUGH MCPS COOLS THE STAR AND DELAYS HELIUM FLASH

RED GIANT BRANCH

HELIUM FLASH (TIP OF THE RED GIANT BRANCH **BRIGHTER AND REDDER IS BRIGHTER!**)

PLASMON DECAYS ARE AN EFFICIENT MECHANISM OF ENERGY LOSS IN STARS!

Fung, SH, Schutz et al (2023)

PLASMON DECAYS **ARE AN EFFICIENT MECHANISM OF ENERGY LOSS IN STARS!**

INCREASE THE BRIGHTNESS OF THE TRGB!

Fung, SH, Schutz et al (2023)

PLASMON DECAYS ARE AN EFFICIENT MECHANISM OF ENERGY LOSS IN STARS!

INCREASE THE BRIGHTNESS OF THE TRGB!

$$10^{-8}$$

$$10^{-9}$$

$$10^{-10}$$

$$10^{-11}$$

$$10^{-12}$$

$$10^{-13}$$

$$10^{-14}$$

$$10^{-15}$$

Fung, SH, Schutz et al (2023)

MUCH LIKE STARS TODAY, THE EARLY UNIVERSE WAS ALSO A HOT MESS....

MCPS WILL BE PRODUCED IN THE EARLY UNIVERSE THROUGH FREEZE-IN

FREEZE-IN ABUNDANCE THROUGH PLASMON DECAYS

ABUNDANCETHROUGH PLASMON

ABUNDANCETHROUGH PLASMON ▋**╛**∶**】╡***╪***╱┫╡<mark>╝</mark>║╲║**

MCP Mass = 40 keV25 10^{0} $m_{\gamma,\rm eff}^2 \propto \alpha T^2$ \sim Abundance 10^{-1} kinematically blocked Plasmon decays MCP 10^{-2} $Y_{\chi}^{\gamma^*} = 2 \times 10^{-10} \left(\frac{Q}{10^{-12}}\right)^2$ 1 **MeV** if $m_{\chi} \gtrsim 10 \text{ keV}$ m_{χ}

Decays stop when plasma frequency is smaller than the MCP mass

FREEZE-IN ABUNDANCE THROUGH PLASMON DECAYS

 $Y_{\chi}^{\gamma^*} = 3 \times 10^{-8} \left(\frac{Q}{10^{-12}}\right)^2 \quad \text{if } m_{\chi} \lesssim 10 \text{ keV}$

FREZEN ABUNDANCE THROUGH PLASMON DECAYS

 $Y_{\chi}^{\gamma^*} = 3 \times 10^{-8} \left(\frac{Q}{10^{-12}}\right)^2 \quad \text{if } m_{\chi} \lesssim 10 \text{ keV}$

 $m_{\gamma,\text{eff}}^2 \sim \frac{\alpha n_e}{m_e}$

$Y_{\chi}^{\gamma^*} = 3 \times 10^{-8} \left(\frac{Q}{10^{-12}}\right)$ if $m_{\chi} \lesssim 10 \text{ keV}$

If MCPs are very light, electron freezeout quenches the production!

FREEZE-IN ABUNDANCE THROUGH ANNIHILATIONS

 $1 \, \text{MeV}$ \mathcal{Q} $Y_{\chi}^{e^+e^-} = 1 \times 10^{-9}$ $\left(\frac{10^{-12}}{10^{-12}} \right) \left(\max(m_{\chi}, m_e) \right)$

IF MILLICHARGED PARTICLES EXIST, THEY WILL ALWAYS HAVE BLEABUNDANCE BECAUSE OF FREEZEN

IF MILLICHARGED PARTICLES EXIST, THEY WILL ALWAYS HAVE CE BECAUSE OF FREFZEIN

IF MILLICHARGED PARTICLES **EXIST**, THEY WILL ALWAYS HAVE CE BECAUSE OF FREFZEIN D

IF MILLICHARGED PARTICLES **EXIST**, THEY WILL <u>ALWAYS</u> HAVE **BLE ABUNDANCE BECAUSE OF FREEZEIN**

IF MILLICHARGED PARTICLES EXIST, THEY WILL ALWAYS HAVE AN <u>IRREDUCIBLE ABUNDANCE</u> BECAUSE OF FREEZE-IN

IF MILLICHARGED PARTICLES **EXIST**, THEY WILL ALWAYS HAVE LE ABUNDANCE BECAUSE OF FREEZEIN

Part of the parameter space already excluded by astrophysics!

1. HOW DO MCPS IMPACT OBSERVABLES?

2. REGARDLESS OF WHETHER MCPS ARE DARK MATTER, CAN WE USE THE DARK MATTER EXPERIMENTAL PROGRAM TO LOOK FOR THEM?

DIRECT DETECTION EXPERIMENTS ARE SENSITIVE TO THE ANBIENT DARK MATTER DENSITY

DIRECT DETECTION EXPERIMENTS ARE SENSITIVE TO THE AMBIENT DARK MATTER DENSITY

$\frac{R}{100} \propto 10^{-10}$

DIRECT DETECTION EXPERIMENTS ARE SENSITIVE TO THE AMBIENT DARK MATTER DENSITY

CTION Event Rate

Ro

PDM MDM DM Number density

DIRECT DETECTION EXPERIMENTS ARE SENSITIVE TO THE AND ENT DARK MATTER DENSITY

Event Rate

DM Number density

 $ho_{\rm DM}$

 $m_{\rm DM}$

Rœ

Interaction crosssection

DRECT DETECTION EXPERIMENTS ARE SENSITIVE TO THE AMBIENT DARK MATTER DENSITY

For the MCP background, limits on $\overline{\sigma}_{\rho}$ can be interpreted as limits on $\bar{\sigma}_e \times \rho_{\rm MCP} / \rho_{\rm DM}!$

Event Rate

DM Number density

 $\rho_{\rm DM}$

 $m_{\rm DM}$

 $R \propto$

Interaction crosssection

DIRECT DETECTION EXPERIMENTS WILL BE SENSITIVE TO THE MCP PARAMETER SPACE

DIRECT DETECTION EXPERIMENTS WILL BE SENSITIVE TO THE MCP PARAMETER SPACE

Nuclear recoil bounds recast for the case of light mediators (Hamby et al. PRD 2018)

MCP BACKGROUND

Berlin et al, PRL (2020)

DRECT DEFECTOR

- 0

60

SP. US

MCP BACKGROUND

00

No.

00

N

X

Berlin et al, PRL (2020)

DEFLECTOR

0

60

 $\boldsymbol{\alpha}$

MCP BACKGROUND

00

500

00

SP CO

~

Berlin et al, PRL (2020)

00

60

200

 α

MCP BACKGROUND

00

00

N

STA CO

Berlin et al, PRL (2020)

THE ALTERNATING ELECTRIC FIELD IN THE DEFLECTOR SETS UP AN Alternating MCP current in the detector!

16.4 SP CO 00 00 ••• SP. NP CC Berlin et al, PRL (2020)

DIRECT DEFLECTION EXPERIMENTS WILL BE SENSITIVE TO THE MCP PARAMETER SPACE

Idealized deflector setup, (Berlin et al, PRL 2020)

1. MCPS ARE MINIMAL EXTENSIONS OF THE STANDARD MODEL 2. IF MCPS EXIST, THEY WILL BE IRREDUCIBLY **PRODUCED IN THE EARLY UNIVERSE THROUGH** FREEZE-N

3. DIRECT DETECTION EXPERIMENTS ARE SENSITIVE TO THE IRREDUCIBLE MILLICHARGED BACKGROUND

ILES, SH & SCHUTZ: 2407.21096

