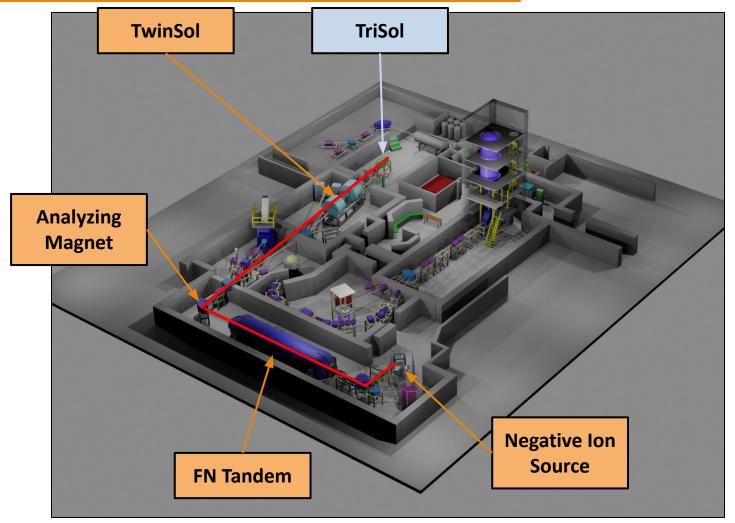
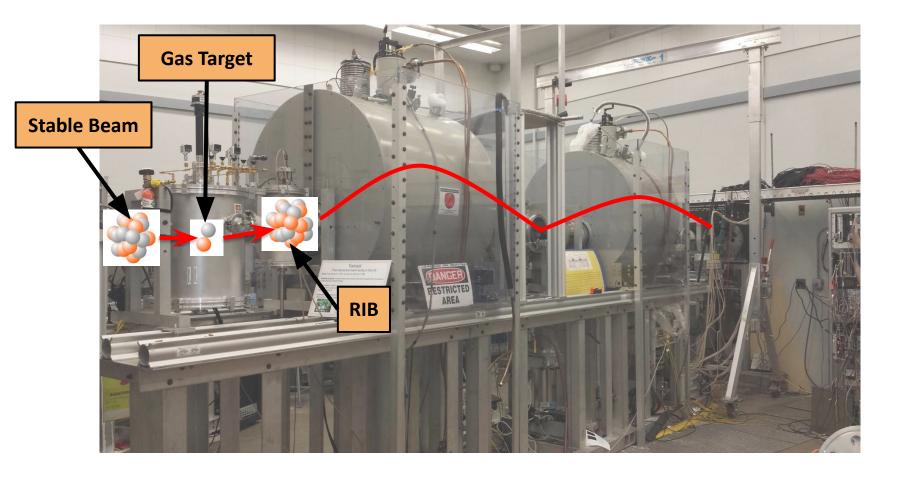


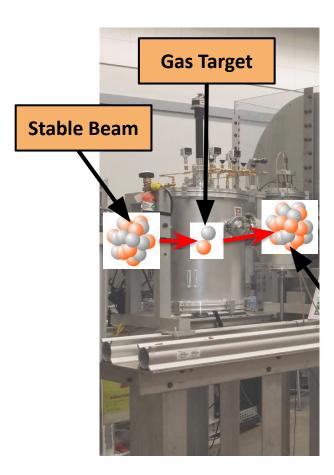
Radioactive ion beams at the Nuclear Science Laboratory

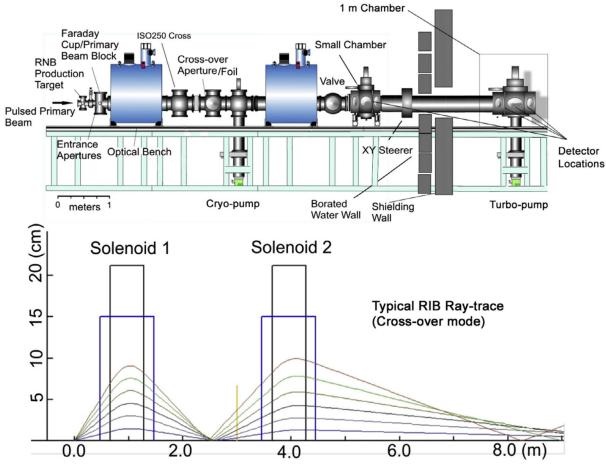

Sam Porter University of Notre Dame

Nuclear Science Laboratory



TwinSol @ NSL

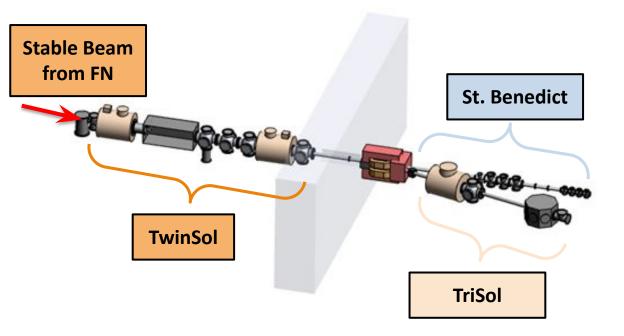




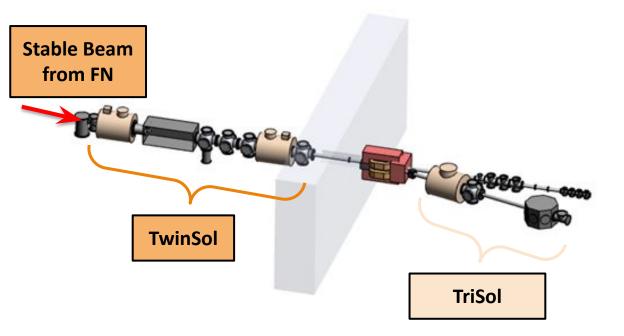
TwinSol@NSL

F.D. Becchetti et. al., NIMB 376 397-401(2016)

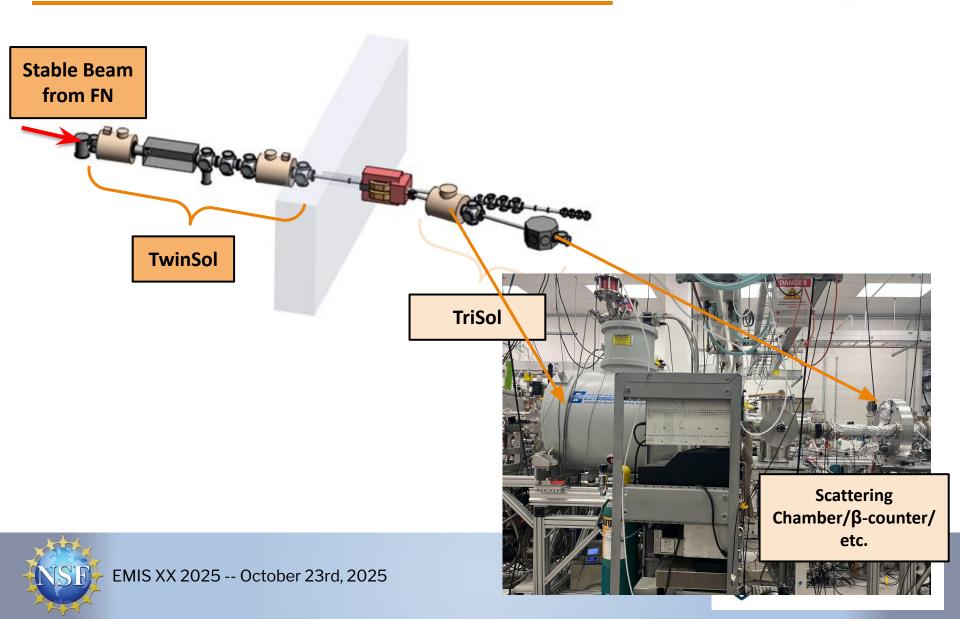
RIB Production @ TwinSol

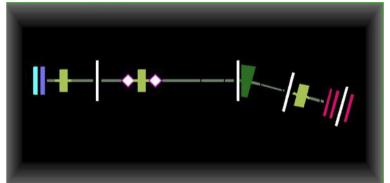

z	^z Pre-2019 ★												37Sc	38Sc	39Sc	40Sc	4/65	42Sc	43Sc	44Sc	45Sc	46Sc	47Sc	48Sc	49Sc	50Sc				
	Р	re-	201	19										34Ca	35Ca	36Ca	37Ca	38Ca	39Ca	40Ca	41 Ca	42Ca	43Ca	44Ca	45Ca	46Ca	47Ca	48Ca	49Ca	
Post-2019 ద										32				33K	34K	35K	36K	37K	30K	39K	40K	41K	42K	43K	44K	45K	46K	47K	48K	
												30 A r	31 A r	32 A r	33 A r	34 A r	35 A r	36 A r	37 A r	38 A r	39Ar	40 A r	41 Ar	42Ar	43 A r	44Ar	45Ar	46Ar	47 A r	
17											28Cl	29Cl	30Cl	31 Cl	3201	33Cl	34Cl	35Cl	36Cl	37Cl	38Cl	39Cl	40Cl	41 Cl	4201	43Cl	44Cl	45Cl	46Cl	
										265	278	285	295	308	318	328	338	348	358	365	378	385	398	405	415	428	435	445	458	
15									24P	25P	26P	27P	28P	*	*	31P	ls	oto	pe		Rea	cti	on		Rate (pps/μA)					
								22Si	23Si	24Si	25Si	26Si	27Si	28Si	29Si	30Si	¹¹ C				¹⁰ B(d,n)				2.4x10 ⁵					
13	21Al 2									23 A l	24Al	25Al	26 U	27Al	28/1	29Al	13	¹³ N			¹² C(d,n)				8.1x10 ⁵					
	19Mg								21 M g	22Mg	23/10	24Mg	25Mg	26Mg	27Mg	28Mg	_													
11	11 18Na								20 N a	21 N a	22Na	23Na	24Na	25Na	26Na	27 N a	15	¹⁵ O ¹⁴ N				(d,r	n) 5.0			5.0x10 ⁶				
	16Ne 17Ne								19Ne	20 Ne	21 Ne	22Ne	23Ne	24Ne	25 N e	26 N e	17	¹⁷ F				¹⁶ O(d,n)			$1.5x10^6$					
9	9 14F 15F							₩ ^E	INF.	19F	20F	21F	22F	23F	24F	25F	²⁵ Al				²⁴ Mg(d,n)				3.0x10 ⁵					
		120			130	*	*	160	170	180	190	200	210	220	230	240									_					
7		10N 11N		12N	13N	14N	15N	1 6 IN	17N	18N	19N	20N	21N	22N	23N	²⁹ P		·	²⁸ Si(d,n)				$2.0x10^5$							
		8C 9C			THE	120	13C	14C	15C	16C	170	180	190	20C	21C	22C	³³ Cl				³³ S(d,n)				9x10 ³					
5	6B	7B	\Rightarrow	98	10B	118	128	138	148	15B	16B	17B	188	198	20B	21B	⁴¹ Sc				⁴⁰ Ca(d,n)				4x10 ³					
	1 3				5 7				9	11			13		15			30			Ca(a,11)				4VTO					

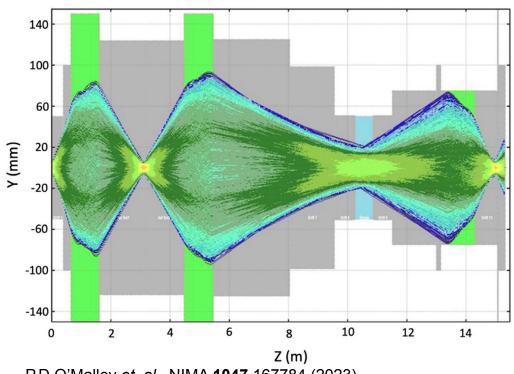
RIB Production Facilities @ NSL



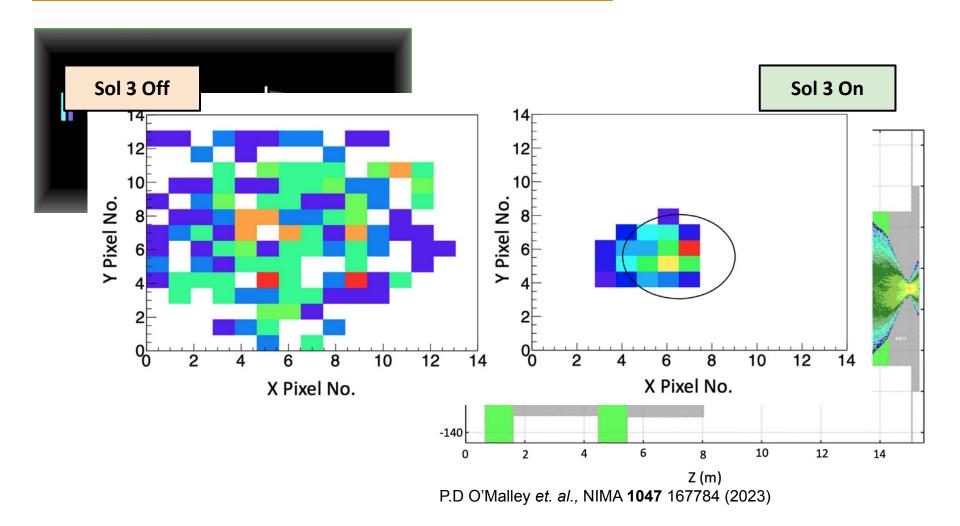
RIB Production Facilities @ NSL



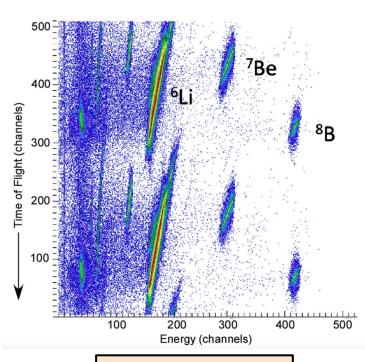

TriSol

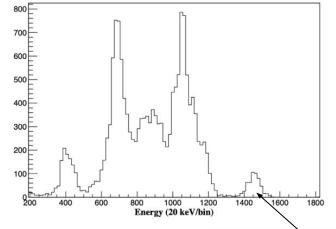


TriSol Simulations

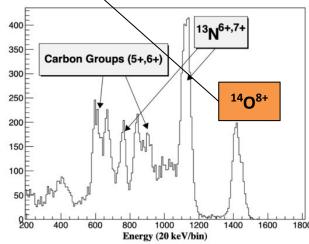

P.D O'Malley et. al., NIMA 1047 167784 (2023)

TriSol Simulations + Commissioning

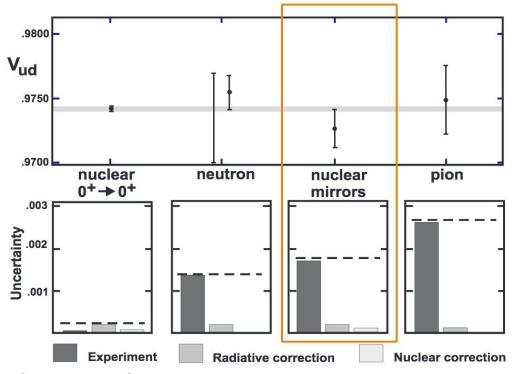




TriSol Simulations + Commissioning



Increased
IOI-to-Contaminant
Ratio by Factor 4

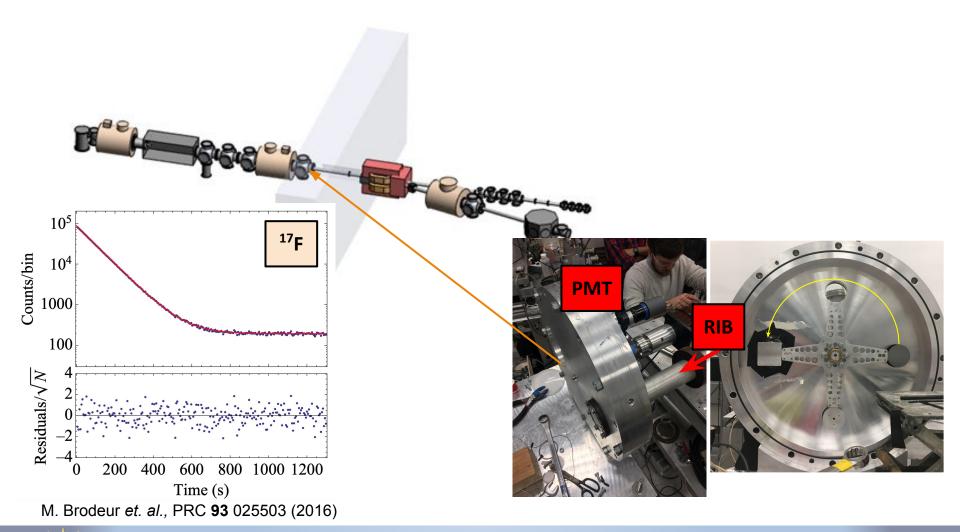


V_{ud} from superallowed mirror decays

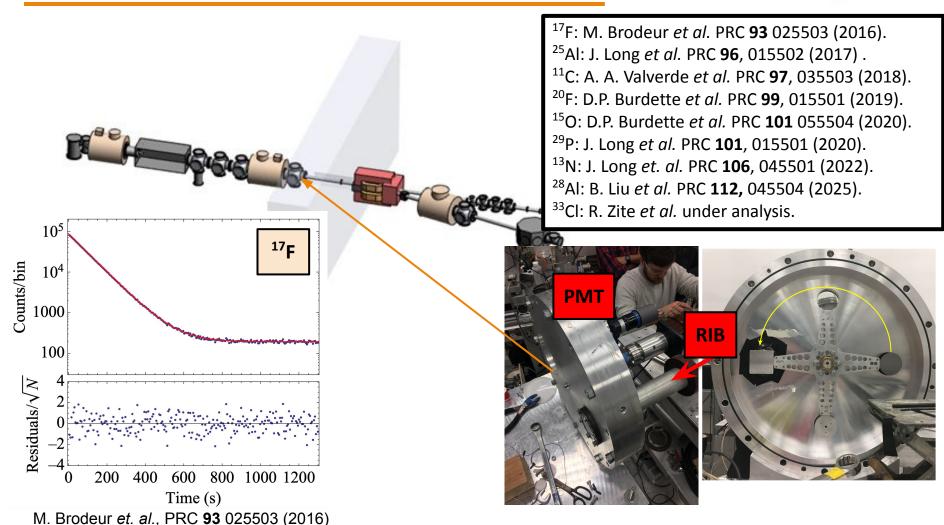
Only 5 nuclei

- Half-life
- Branching Ratios
- Q-values
- Fermi-to-Gamow TellerMixing Ratio (ρ)

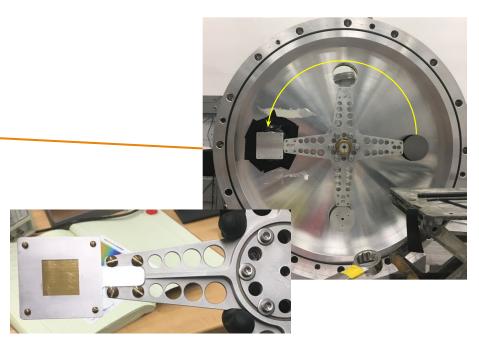
J.C. Hardy and I.S. Towner, arVix:1087.01146 [nucl-ex] (2018)


$$\int (1 + \delta_R)(1 + \delta_{NS} - \delta_C) = \frac{K}{2G_F^2 V_{ud}^2 (1 + \Delta_R)(1 + \frac{f_A}{f_V}\rho)}$$

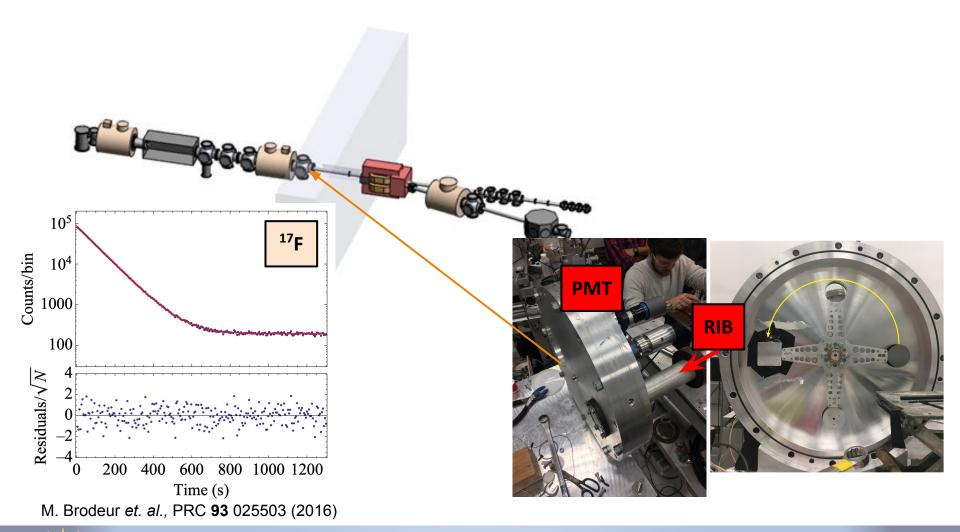
Half-Life Measurements



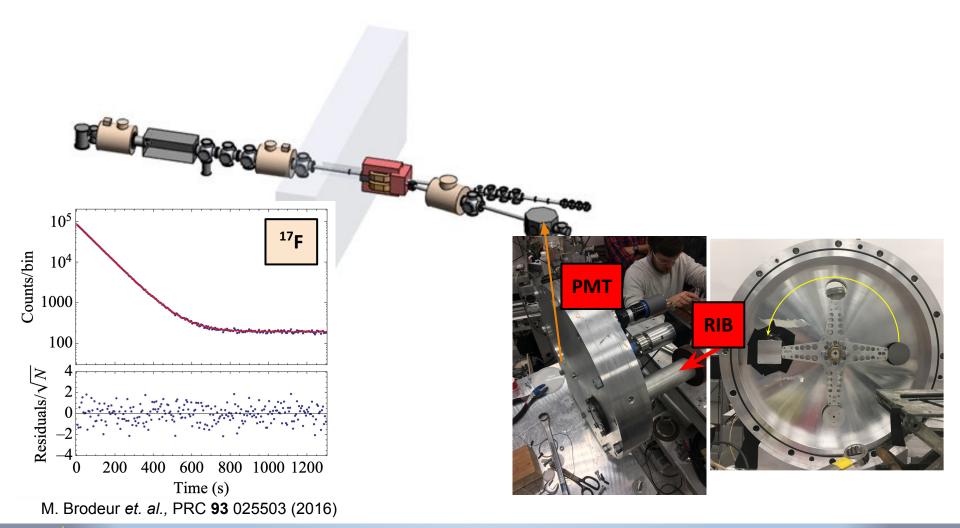
Half-Life Measurements

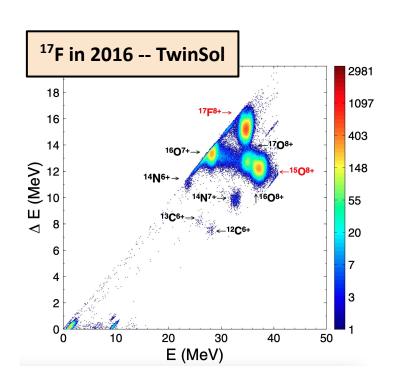


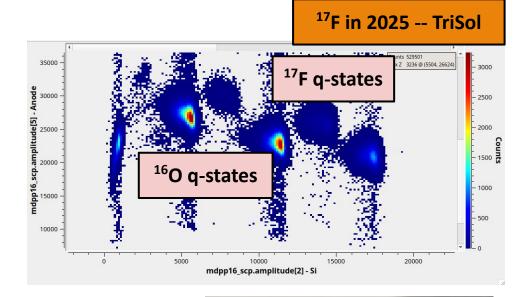
Measurement Procedure

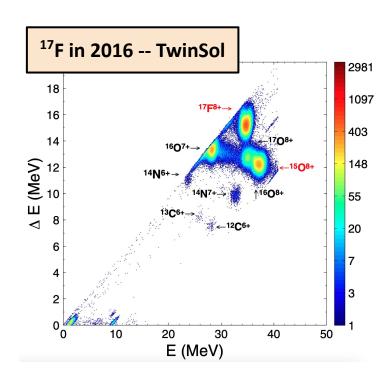

- 1) Implant ion beam on a Ta foil for \sim 3 $t_{1/2}$.
- 2) Deflect beam entering tandem.
- 3) Rotate foil in front of 1 mm plastic scintillator coupled to a PMT.
- 4) Count for 25 t_{1/2}.
- 5) Rotate back to implant position, turn on the beam and repeat.

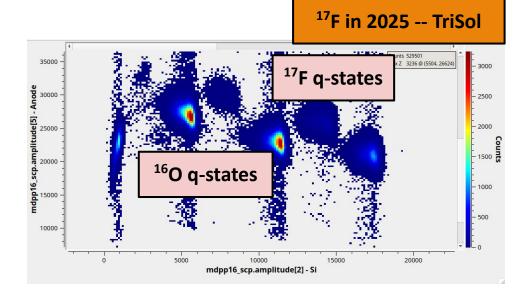
Half-Life Measurements

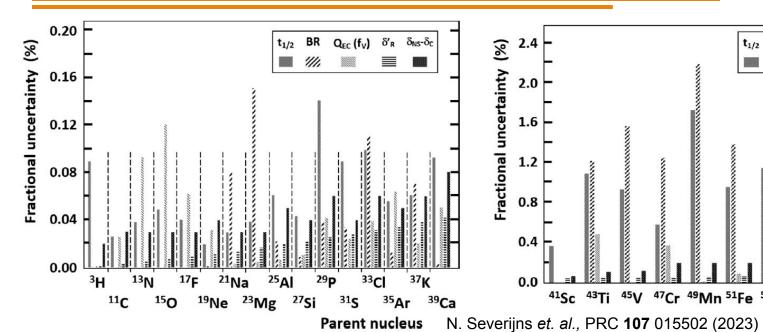


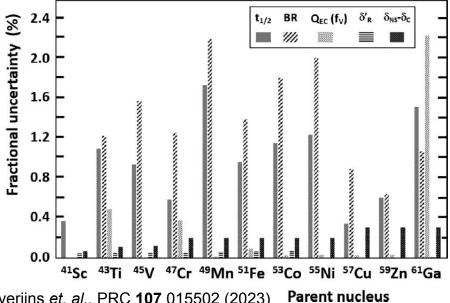


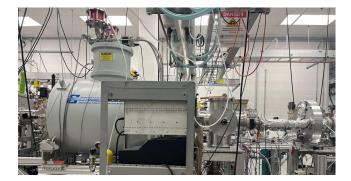


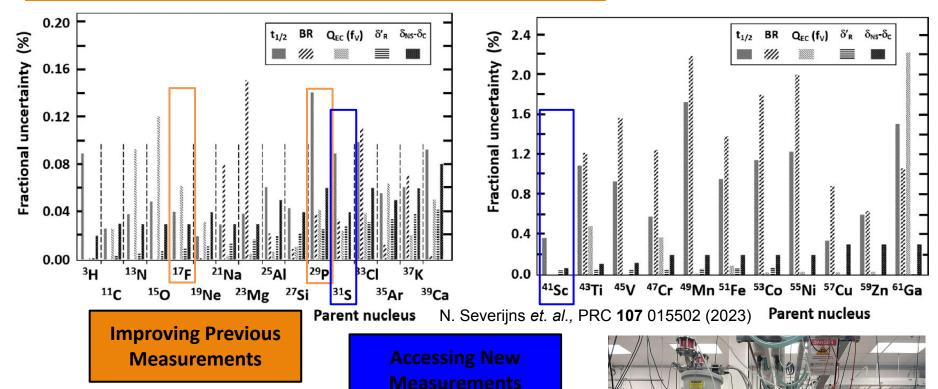


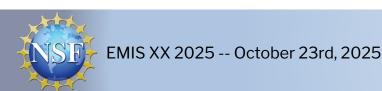



Improved Radioactive IOI-to-Contaminant Ratio

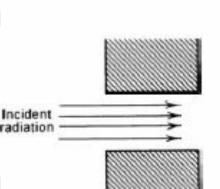


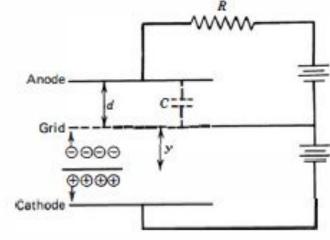






Active Target High Efficiency Detector for Nuclear Astrophysics




Will von Seeger

ATHENA

- Based on Multi-Sampling Ionization Chamber at Argonne National Labs
- Designed to measure total cross sections for helium-induced reactions

Knoll, Radiation Detection and Measurement

$$V_{max} = \frac{Ne}{C} = \frac{eE_d}{WC}$$

$$E_d \propto Z^2$$

-Energy to create an e⁻/ion pair

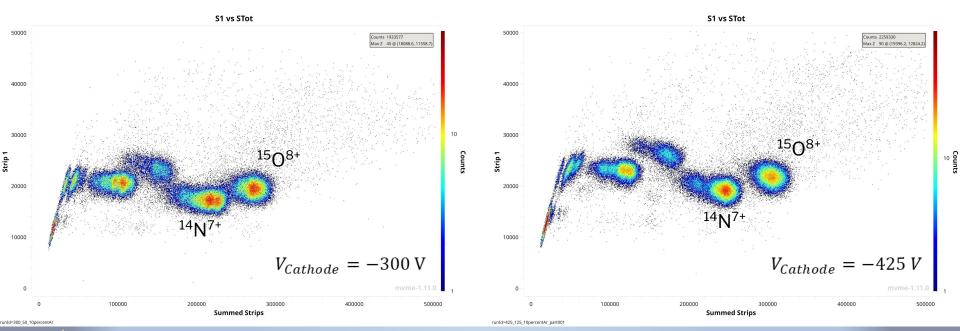
Recent ATHENA Improvements

High dead time in DAQ

 \Rightarrow

Implement digitizers in DAQ

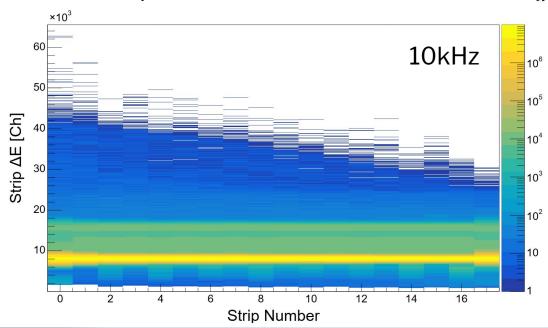
Helium low W-value

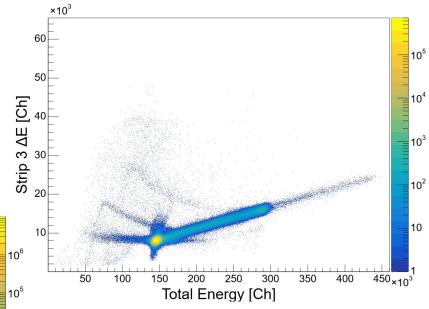


Dope helium with a good counting gas (CF₄)

Helium low e⁻ drift speeds

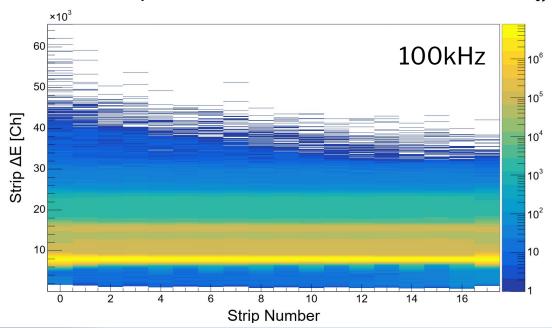
Make cathode sheath for higher cathode voltages

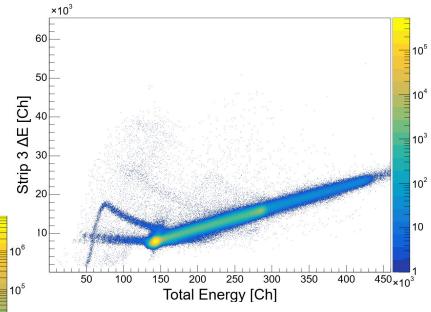




ATHENA at High Rate

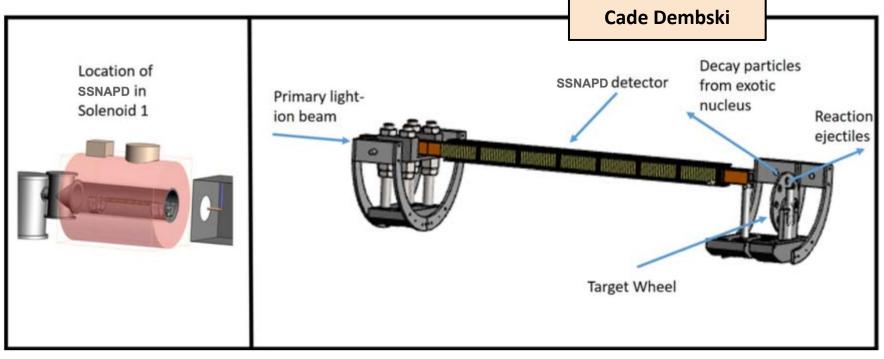
- Recommissioned with ¹²C+¹²C fusion
- •41 MeV ¹²C beam
- •150 Torr methane
- Ran at rates from 4kHz-150kHz
- Online spectra indicated that <150kHz





ATHENA at High Rate

- Recommissioned with ¹²C+¹²C fusion
- •41 MeV ¹²C beam
- •150 Torr methane
- Ran at rates from 4kHz-150kHz
- Online spectra indicated that <150kHz



Solenoid Spectrometer for Nuclear AstroPhysics and Decays (SSNAPD)

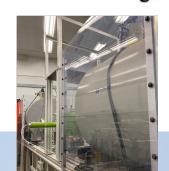
- Modification of the solenoidal spectrometer design used frequently in nuclear structure research (e.g. HeLiOS, SOLARIS, ISS)
- High geometric efficiency and robust particle ID capabilities are ideal for studying charged particle decays to constrain astrophysical reaction rates
- Recent upgrade to TriSol radioactive beam facility enables sensitive measurements of low proton- and α -branching ratios

SSNAPD @ TriSol

Example: $^{19}Ne*\alpha$ -branching for $^{15}O(\alpha,\gamma)^{19}Ne$ via $^{19}F(^3He,t)^{19}Ne$

 $B_{\alpha} = \frac{N_{\alpha}}{N_{t^*}} \frac{1}{\epsilon}$

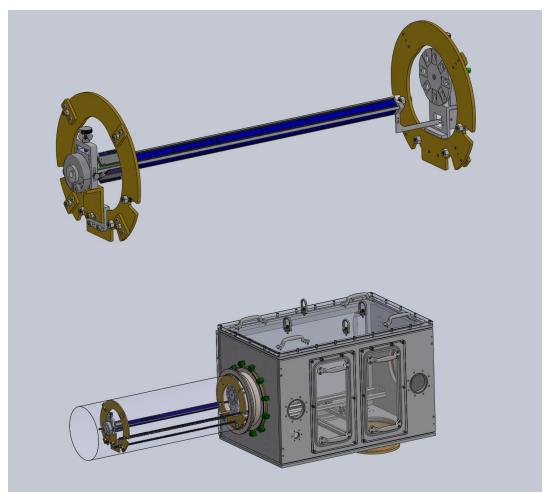
 $E - \Delta E$


telescope


³He light ion beam From FN Tandem Accelerator δ electrons CaF $_2$ Target $^{19}Ne^*$

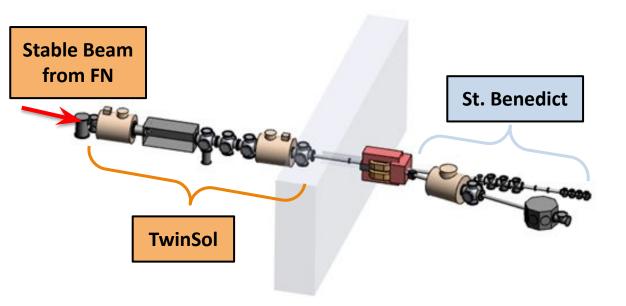
Decay α's

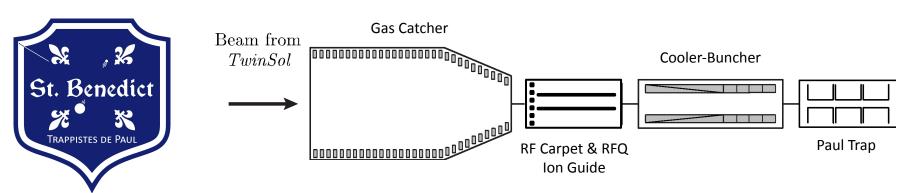
Ejectile Tritons



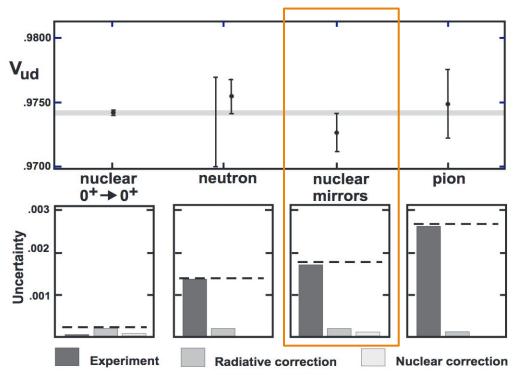


SSNAPD Designs


- Mounting frame and target wheel designed w/ ND Engineering and Design Core
- Assembly chamber for array built and leak tested
- More to come soon…



RIB Production Facilities @ NSL



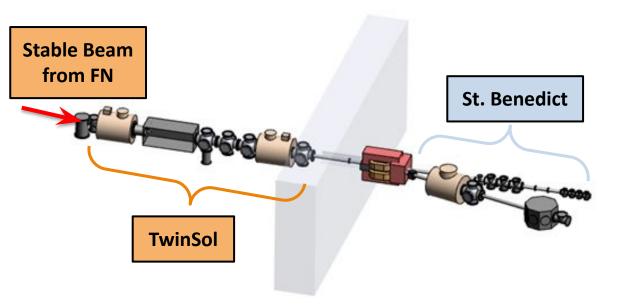
V_{ud} from superallowed mirror decays

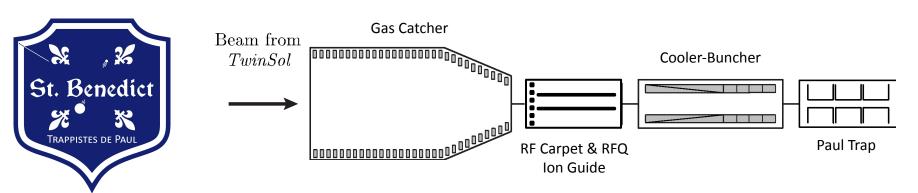
Only 5 nuclei

- Half-life
- Branching Ratios
- Q-values
- Fermi-to-Gamow Teller Mixing Ratio (ρ)

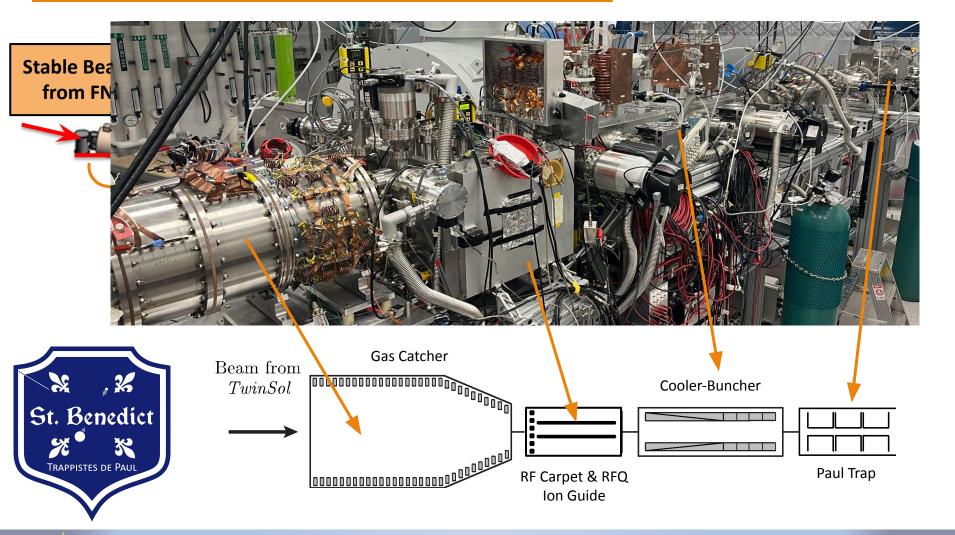
J.C. Hardy and I.S. Towner, arVix:1087.01146 [nucl-ex] (2018)

$$ft(1+\delta_R)(1+\delta_{NS}-\delta_C) = \frac{K}{2G_F^2 V_{ud}^2 (1+\Delta_R)(1+\frac{f_A}{f_V}\rho)}$$

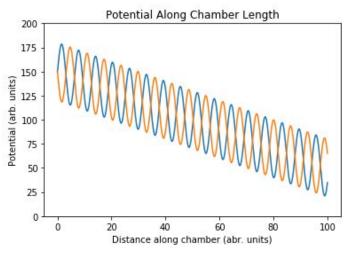

- β asymmetry parameter A_β
- v asymmetry parameter **B**
- β-v angular **4** correlation **2**



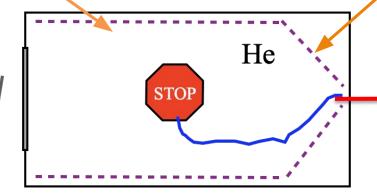
RIB Production Facilities @ NSL



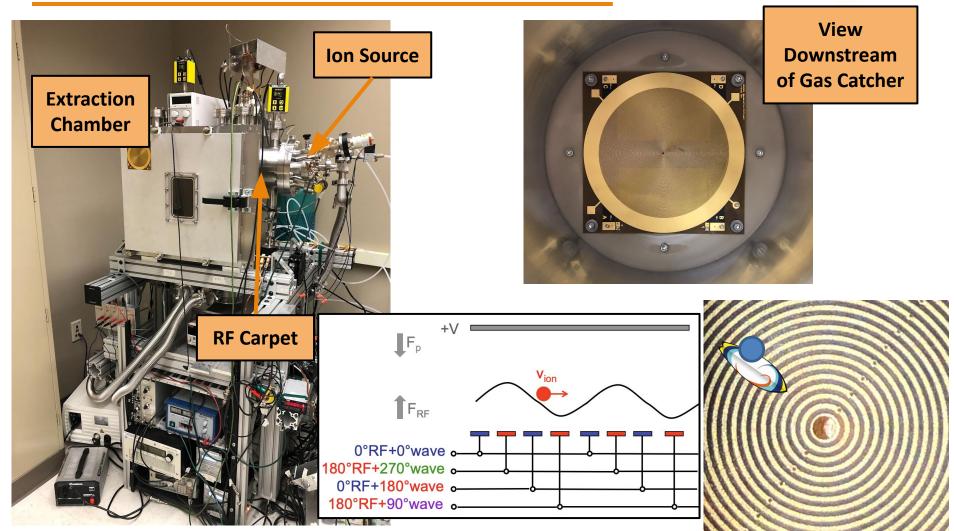
Superallowed Transition Beta-Neutrino Decay Ion Coincidence Trap



Gas Catcher

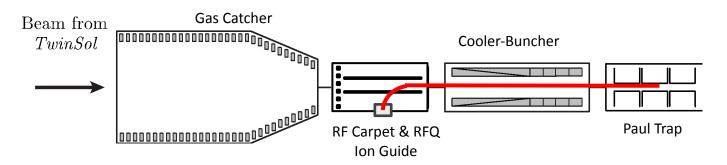


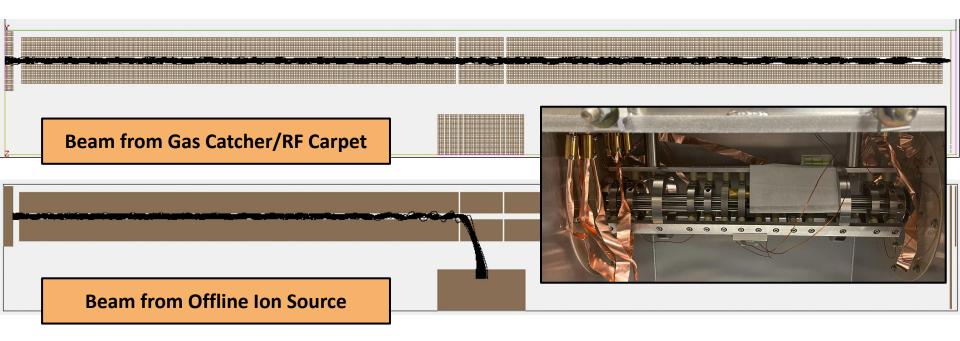
10 - 40 MeV Beams



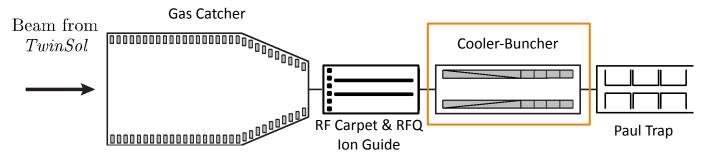
100 eV Beams

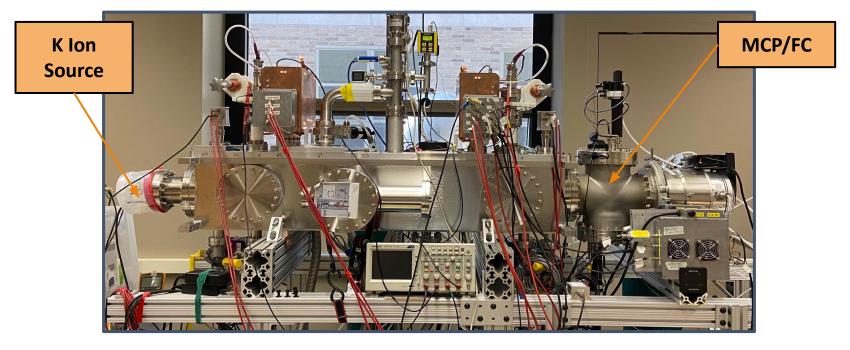
RF Carpet



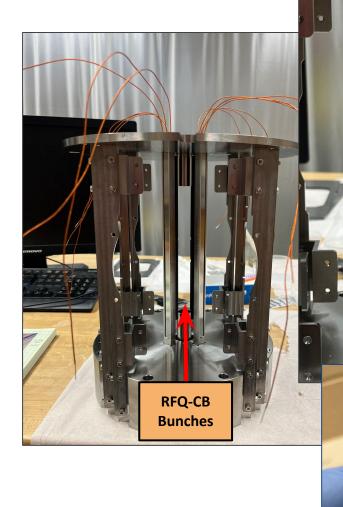


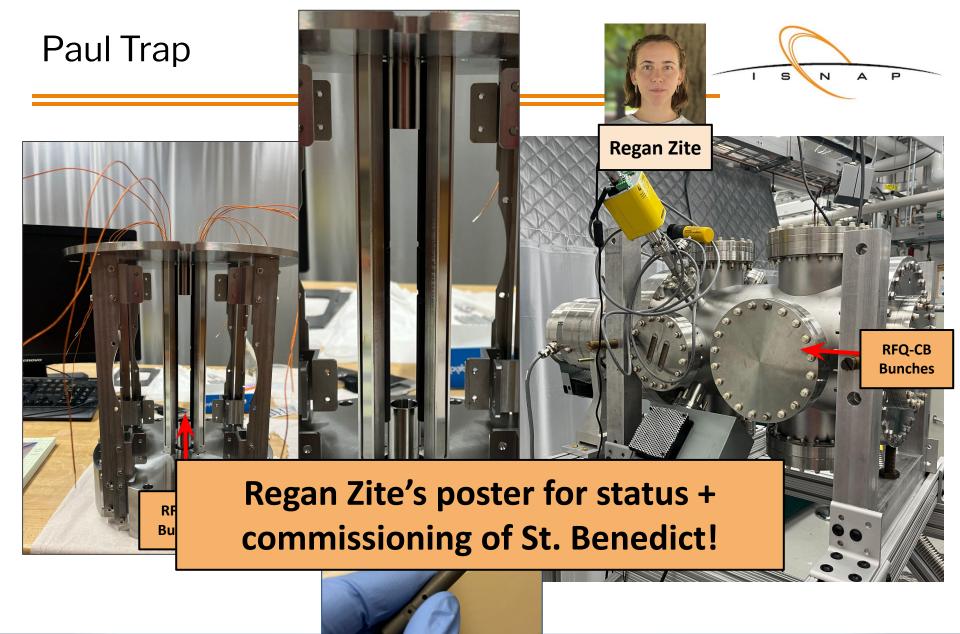
RFQ Ion Guide (+ Offline Ion Source)



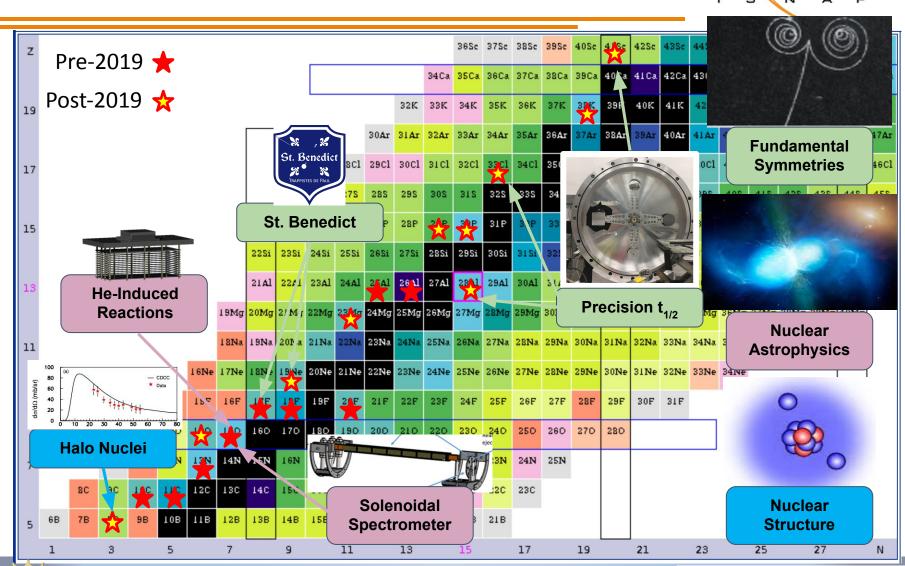


RFQ Cooler-Buncher




Paul Trap

RIBs @ NSL

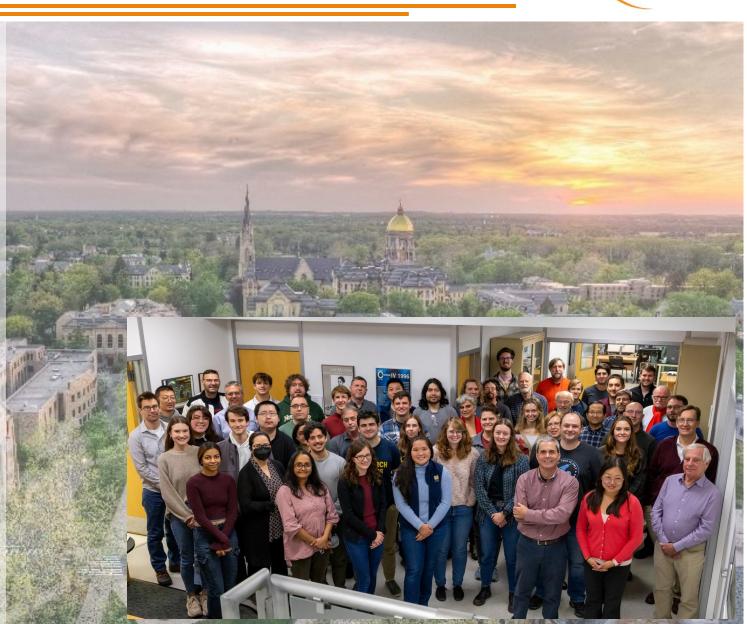


	z					_										36Sc	37Sc	38Sc	39Sc	40Sc	4/65	42Sc	43Sc	44Sc	45Sc	46Sc	47Sc	48Sc	49Sc	50Sc
		P	re-	201	.9	*									34Ca	35Ca	36Ca	37Ca	38Ca	39Ca	40Ca	41 Ca	42Ca	43Ca	44Ca	45Ca	46Ca	47Ca	48Ca	49Ca
1	9	Ро	st-2	201	9	\Diamond								32K	33K	34K	35K	36K	37K	30K	39K	40K	41K	42K	43K	44K	45K	46K	47K	48K
										ľ			30Ar	31 A r	32 A r	33 A r	3 4A r	35Ar	36 A r	37Ar	38 A r	39Ar	40 A r	41Ar	42Ar	43Ar	44Ar	45Ar	46Ar	47Ar
1	7											28Cl	29Cl	30Cl	31 Cl	32Cl	33Cl	34Cl	35Cl	36Cl	37Cl	38Cl	39Cl	40Cl	41 Cl	42Cl	43Cl	44Cl	45Cl	46Cl
											265	278	285	298	308	315	328	338	348	358	365	378	385	398	405	418	428	438	445	458
1	5									24P	25P	26P	27P	28P	**	3 ₽₽	31P	32P	33P	34P	35P	36P	37P	38P	39P	40P	41P	42P	43P	44P
									22Si	23Si	24Si	25Si	26Si	27Si	28Si	29Si	30Si	31 Si	32Si	33Si	34Si	35Si	36Si	37Si	38Si	39Si	40Si	41Si	42Si	43Si
1	3								21 A l	22 A l	23Al	24Al	25Al	26 U	27Al	2841	29Al	30Al	31Al	32Al	33Al	34Al	35Al	36Al	37Al	38Al	39Al	40Al	41Al	42Al
								19Mg	20 M g	21 M g	22Mg	23 M g	24Mg	25Mg	26Mg	27 M g	28Mg	29Mg	30Mg	31Mg	32Mg	33Mg	34Mg	35Mg	36Mg	37 M g	38Mg	39Mg	40Mg	
1	1							18Na	19 N a	20 N a	21 N a	22Na	23 N a	24Na	25Na	26 N a	27 N a	28 N a	29Na	30 N a	31 N a	32 N a	33 N a	34Na	35 N a	36 N a	37 N a			
							16Ne	17Ne	18Ne	19Ne	20 Ne	21 Ne	22Ne	23Ne	24Ne	25Ne	26 N e	27Ne	28Ne	29Ne	30 Ne	31 Ne	32Ne	33Ne	34Ne					
9	9					14F	15F	16F	₩F	17F	19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F	30F	31F							
					120	130	*	*	160	170	180	190	200	210	220	230	240	250	260	270	280									
7	7			1010	1110	12N	13N	14N	15N	1610	17N	18N	19 N	20 N	21N	22N	23N	24N	25 N											
			8C	9C	₩	IIIC	12C	13C	140	15C	16C	170	180	190	20C	21C	22C	23C												
5	5	6B	7B	\Rightarrow	98	10B	118	12B	13B	148	15B	16B	17B	18B	198	20B	21B													
		1		3		5		7		9		11		13		15		17		19		21		23		25		27		N

RIBs @ NSL

Summary

- TwinSol has a long history of provide RIBs for a wide range of scientific applications, and will continue to provide such beams to the St. Benedict facility
- The advent of *TriSol* improves the quality and purity of RIB deliverable, enabling access to new experiments and radioactive isotopes
- These improvements unlock many new scientific opportunities in fundamental symmetries, with precision half-life measurements, nuclear astrophysics, with ATHENA and SSNAPD, and beyond


Acknowledgements

The TwinSol/TriSol Collaboration:

Dan Bardayan Olivia Bruce Max Brodeur **Scott Carmichael** Sydney Coil Cade Dembski Jim Kolata Patrick O'Malley Fabio Rivero Adrian Valverde Dan Schroeder Will von Seeger Regan Zite

Expanding mirror nuclei a_{Bv} measurements

		a						
Parent nucleus	ΔV_{ud}	$(\Delta V_{ud})^{ m limit}$	Factor $\Delta \mathcal{F}t$					
³ H	0.0011	0.0010	2.1					
¹¹ C	0.0025	0.0016	4.0					
^{13}N	0.0017	0.0017	1.0					
¹⁵ O	0.0020	0.0016	2.4					
17 F	0.0019	0.0013	3.1					
¹⁹ Ne	0.0011	0.0010	1.5					
²¹ Na	0.0022	0.0017	2.7					
23 Mg	0.0025	0.0018	3.1					
²⁵ Al	0.0019	0.0018	1.7					
²⁷ Si	0.0029	0.0018	4.1					
^{29}P	0.0026	0.0018	3.4					
31 S	0.0038	0.0018	5.9					
³³ Cl	0.0021	0.0018	2.0					
³⁵ Ar	0.0019	0.0018	1.1					
³⁷ K	0.0034	0.0017	5.8					
³⁹ Ca	0.0024	0.0016	3.5					
⁴¹ Sc	0.0029	0.0022	2.7					
N. Severjins and O			T 152 , 014018					

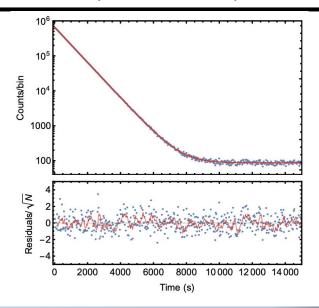
(2013)

¹⁷F: M. Brodeur *et al.* PRC **93** 025503 (2016).

²⁵Al: J. Long et al. PRC **96**, 015502 (2017).

¹¹C: A. A. Valverde et al. PRC **97**, 035503 (2018).

²⁰F: D.P. Burdette *et al.* PRC **99**, 015501 (2019).


¹⁵O: D.P. Burdette *et al.* PRC **101** 055504 (2020).

²⁹P: J. Long *et al.* PRC **101**, 015501 (2020).

¹³N: J. Long Ph.D. Thesis (2020). Accepted at PRC.

²⁸Al: B. Liu *et al.* In preparation.

³³Cl: P.D. O'Malley et al. under analysis.

Expanding mirror nuclei a_{gv} measurements

		a	
Parent nucleus	ΔV_{ud}	$(\Delta V_{ud})^{ m limit}$	Factor $\Delta \mathcal{F}$
³ H	0.0011	0.0010	2.1
11 C	0.0025	0.0016	4.0
^{13}N	0.0017	0.0017	1.0
¹⁵ O	0.0020	0.0016	2.4
17 F	0.0019	0.0013	3.1
¹⁹ Ne	0.0011	0.0010	1.5
²¹ Na	0.0022	0.0017	2.7
23 Mg	0.0025	0.0018	3.1
²⁵ A1	0.0019	0.0018	1.7
²⁷ Si	0.0029	0.0018	4.1
^{29}P	0.0026	0.0018	3.4
31 S	0.0038	0.0018	5.9
³³ Cl	0.0021	0.0018	2.0
^{35}Ar	0.0019	0.0018	1.1
37 K	0.0034	0.0017	5.8
³⁹ Ca	0.0024	0.0016	3.5
⁴¹ Sc	0.0029	0.0022	2.7

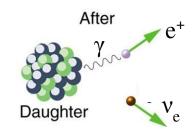
N. Severjins and O. Naviliat-Cuncic, Phys. Scr. T**152**, 014018 (2013)

Nucleus	n	$^{3}\mathrm{H}$	¹¹ C	^{13}N	¹⁵ O	$^{17}\mathrm{F}$	¹⁹ Ne
ρ	-2.20	-2.10	0.75	0.56	-0.63	-1.28	1.60
J	1/2	1/2	3/2	1/2	1/2	5/2	1/2
$\delta A_{eta}/A_{eta}$	4.0	5.1	0.04	0.04	0.7	-0.06	-12.6
$\delta a_{eta u}/a_{eta u}$	3.6	4.6	-1.2	-0.7	-0.9	-3.6	-13.1

Table I. Calculated sensitivities to $\delta \rho/\rho$ for the lowest mass mirrors, with approximate ρ values taken from [10] and the leading order expressions.

L. Hayen and A.R. Young, arVix:2009.11364 (2020)

Will greatly improve on previous ¹⁷F *Q* measurement based on a measurement of A_β (N. Severjins *et. al.*, PRL **63**, 1050 (1989)) due to improved sensitivity



Radiative Corrections

Before

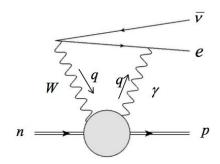
The emitted positron will interact with the nucleus.

Radiative corrections:

$$|M_{fi}|^2 = 2(1 - \delta_c)(1 + \delta_R)(1 + \Delta_R^V)$$

Transition-dependent: $\delta_{\rm R}$ ~1.4%

Long-distance, depend on e⁺ energy.

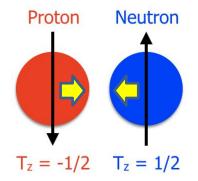

$$\delta_R = \delta_R' + \delta_{NS}$$

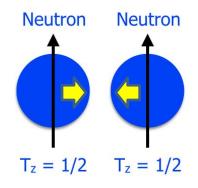
Nuclear structure independent

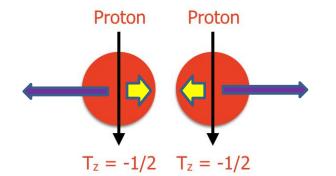
Nuclear structure dependent

Transition-independent: Δ^{V}_{R} ~2.4%

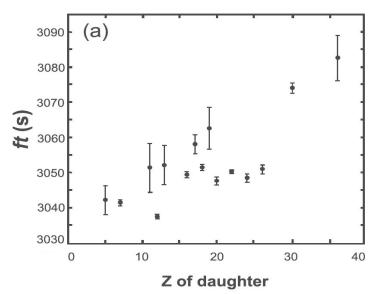
Short-distance, no e⁺ energy-dependence. Includes W-γ box diagrams.







Isospin Symmetry Breaking Correction

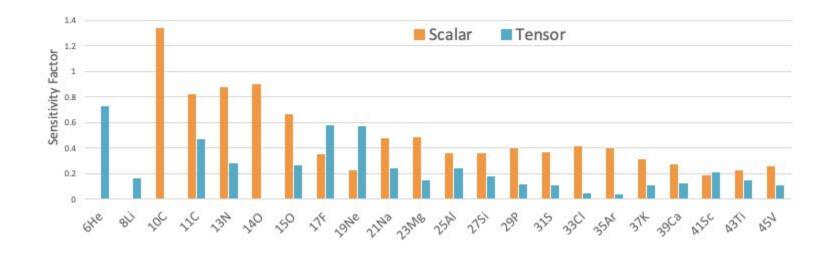


Isospin symmetry is broken in nuclei due to:

- Proton-neutron mass difference
- Coulomb interaction

Isospin Symmetry Breaking correction $\delta_{\text{c}}\colon\text{$^{\sim}$0.2 - 1.5\%}$

$$|M_{fi}|^2 = 2(1 - \delta_c)$$


Probing exotic currents

$$b_{Fermi} \approx \pm 2\gamma \, Re \left(\frac{C_S + C'_S}{C_V + C'_V} \right)$$

$$b_{mirror} \approx \pm \frac{2\gamma}{1+|\tilde{\rho}^2|} \, Re \left(\frac{C_S + {C'}_S}{C_V + {C'}_V} + |\tilde{\rho}^2| \frac{C_T + {C'}_T}{C_A + {C'}_A} \right)$$

$$ft = \frac{K}{\left|M'_{fi}\right|^2} \frac{1}{1 + \frac{\gamma}{W}b}$$

Back Up Slide - V_{us} and V_{ub}

$$\mathsf{V}_{\mathsf{us}}$$

Obtained through Kaon decay: $K \rightarrow \pi \ell \nu$

(Constrained by theory)

 $T^- \rightarrow T^- \nu \text{ or } T^- \rightarrow K^- \nu$

(Purely experimental)

Discrepancy between each method which could have effects on the unitarity sum.

$$V_{ub}$$

Obtained most accurately from:

$$B \to \pi \ell \nu$$

Uncertainty dominated by QCD calculations

