20th International Conference on Electromagnetic Isotope Separators and Related Topics (EMISXX)

Contribution ID: 33

Type: Oral contributed talk

Nuclear spin polarization and collinear laser spectroscopy program at TRIUMF

Monday, 20 October 2025 16:40 (20 minutes)

The polarizer facility at TRIUMF-ISAC is a versatile facility for delivering highly nuclear-spin-polarized radioactive isotope beams (RIB) to various experiments and conducting collinear fast-beam laser spectroscopy to investigate nuclear shapes and charge radii. In recent years, there has been growing interest in novel nuclear-spin-polarized beams which drives further research and development. A series of innovations have been implemented: upgrades of laser and beamline systems, developments of Rydberg-atom field-ionizer and fluorescence polarimeter, and improvements in photon detection of fluorescence. Meanwhile, we are pursuing a universal laser-nuclear-polarization method through spin exchange optical pumping (SEOP). Additionally to facilitate nuclear-spin polarization through direct optical pumping of exotic isotopes with unknown atomic structures, collinear fast-beam laser spectroscopy is conducted to precisely measure isotope shifts and hyperfine structures, which also offers valuable insights into the nuclear shapes and charge radii of these isotopes.

fine structures, which also offers valuable insights into the nuclear sl Email address ruohong@triumf.ca Supervisor's Name

Supervisor's email

Funding Agency

Classification

Primary author: LI, Ruohong (TRIUMF)

Co-authors: LASSEN, Jens (TRIUMF Canada's particle accelerator centre); PREOCANIN, Katarina (TRIUMF); ZHOU, Simon (TRIUMF); PICININI, Enzo Conceição (TRIUMF); PRASAD, Aryan (TRIUMF); ROMAN, Mathias (TRI-UMF); YASUDA, Runa (Tokyo University of Agriculture and Technology); D'AOUST, Elyse (TRIUMF); Dr KUNZ, Peter (TRIUMF); Dr STACHURA, Monika (TRIUMF); GOTTBERG, Alexander (TRIUMF)

Presenter: LI, Ruohong (TRIUMF)
Session Classification: Facilities II

Track Classification: Ion traps and laser techniques