Theory Of Direct Detection For The Next Generation

Tanner Trickle

Dark Interactions Workshop – October 16th, 2024

Outline

Classic Nuclear Recoil Direct Detection

ttrickle@fnal.gov

Theory of Direct Detection For The Next Generation

Outgoing Particle

NR Detectors Approaching Neutrino Floor

[2408.02877] First Measurement of Solar \$^8\$B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

[2409.17868] First Search for Light Dark Matter in the Neutrino Fog with XENONnT

Direct Detection Of Light Dark Matter

How do we search for sub-GeV mass dark matter?

ttrickle@fnal.gov

Outline

ttrickle@fnal.gov

Scattering Kinematics: Nuclear Recoil

1D Billard Ball Mechanics

A solution: Lighter nuclei, still limited to $\,m_N \sim {
m GeV}$

ttrickle@fnal.gov

Scattering Kinematics

Scattering Kinematics

[2108.03239] Searches for light dark matter using condensed matter systems

ttrickle@fnal.gov

Absorption Kinematics

ttrickle@fnal.gov

Outline

ttrickle@fnal.gov

Current Electron Based Experiments

Many Ideas For Future Detectors

Other Semiconductors/Dielectrics

SNOWMASS21-CF1_CF2-IF1_IF8-120.pdf (TESSARACT: GaAs, Sapphire)

[2101.08275] Dark matter-electron scattering in dielectrics

[2101.08263] Determining Dark Matter-Electron Scattering Rates from the Dielectric Function

[2008.08560] SiC Detectors for Sub-GeV Dark Matter

Scintillators

[1607.01009] Direct Detection of sub-GeV Dark Matter with Scintillating Targets

[2402.01395] Dark Matter-Electron Scattering Search Using Cryogenic Light Detectors

Doped Semiconductors

[2212.04504] Doped Semiconductor Devices for sub-MeV Dark Matter Detection

Low Band Gap (~meV) Targets

[1909.09170] Directional Dark Matter Detection in Anisotropic Dirac Materials

[2202.11716] Dark Matter Direct Detection in Materials with Spin-Orbit Coupling

Organic Aromatics

[1912.02822] Dark Matter-Electron Scattering from Aromatic Organic Targets

- •
- •

Theory of Direct Detection For The Next Generation

ttrickle@fnal.gov

Phonons

ttrickle@fnal.gov

Phonon Scattering Rate

Fermi's golden rule

$$\Gamma(\boldsymbol{v}) = \frac{1}{V} \int \frac{d^3 q}{(2\pi)^3} \sum_{f} \left| \langle f | \, \widetilde{\mathcal{V}}(-\boldsymbol{q}, \boldsymbol{v}) \, | i \rangle \right|^2 2\pi \, \delta \big(E_f - E_i - \omega_{\boldsymbol{q}} \big)$$

Fermi's golden rule for phonon excitations

$$\Gamma(\boldsymbol{v}) = \frac{1}{V} \int \frac{d^3 q}{(2\pi)^3} \sum_{\nu, \boldsymbol{k}} \left| \sum_{l, j} \langle \nu, \boldsymbol{k} | e^{i\boldsymbol{q} \cdot \boldsymbol{x}_{lj}} \widetilde{\mathcal{V}}_{lj}(-\boldsymbol{q}, \boldsymbol{v}) | 0 \rangle \right|^2 2\pi \, \delta \left(\omega_{\nu, \boldsymbol{k}} - \omega_{\boldsymbol{q}} \right)$$
$$|\nu, \boldsymbol{k}\rangle = a_{\nu \boldsymbol{k}}^{\dagger} | 0 \rangle$$

$$\boldsymbol{u}_{lj} = \boldsymbol{x}_{lj} - \boldsymbol{x}_{lj}^0 = \sum_{\nu=1}^{3n} \sum_{\boldsymbol{k} \in 1\text{BZ}} \frac{1}{\sqrt{2Nm_j \omega_{\nu, \boldsymbol{k}}}} \Big(\hat{a}_{\nu, \boldsymbol{k}} \, \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j} \, e^{i\boldsymbol{k} \cdot \boldsymbol{x}_{lj}^0} + \hat{a}_{\nu, \boldsymbol{k}}^\dagger \, \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j} \, e^{-i\boldsymbol{k} \cdot \boldsymbol{x}_{lj}^0} \Big)$$

The general goal is to find the interaction potential in terms of excitation operators.

[2009.13534] Effective Field Theory of Dark Matter Direct Detection With Collective Excitations

• T. Trickle, Z. Zhang, K. Zurek

ttrickle@fnal.gov

Projected Sensitivity Of Single Phonon Detectors

[1910.10716] Multi-Channel Direct Detection of Light Dark Matter: Target Comparison

S. Griffin, K. Inzani, **T. Trickle**, Z. Zhang, K. Zurek

Projected Sensitivity Of Single Phonon Detectors

[2308.06314] Effective Field Theory for Dark Matter Absorption on Single Phonons

ttrickle@fnal.gov

Phonon-Based Experiments

Funded

SP/CE

Sub-eV Polar Interactions Cryogenic Experiment

Proposed

Helium Roton Apparatus for Light Dark Matter

Applying Superfluid Helium to Light Dark Matter Searches: Demonstration of the HeRALD Detector Concept [2307.11877]

Single Phonon Detection for Dark Matter via Quantum Evaporation and Sensing of Helium-3 [2201.00738]

[2301.04778] Broad-Range Directional Detection of Light Dark Matter in Cryogenic Ice Phys. Rev. Research 5, 043262 (2023) - Chiral phonons as dark matter detectors

ttrickle@fnal.gov

Theory of Direct Detection For The Next Generation

4.0

Magnons

100

Projected Sensitivity of Single Magnon Detectors

[1905.13744] Detecting Light Dark Matter with Magnons

• T. Trickle, Z. Zhang, K. Zurek

[2005.10256] Detectability of Axion Dark Matter with Phonon Polaritons and Magnons

• A. Mitridate, T. Trickle, Z. Zhang, K. Zurek

Outline

Nuclear Recoil Effective Field Theory

[1203.3542] The Effective Field Theory of Dark Matter Direct Detection

$$\mathcal{L}_{\text{int}} = \sum_{N=n,p} \sum_{i} c_i^{(N)} \mathcal{O}_i \chi^+ \chi^- N^+ N^-$$

$$\mathcal{O}_1 = \mathbf{1}$$

$$\mathcal{O}_2 = (v^\perp)^2$$

$$\mathcal{O}_3 = i\vec{S}_N \cdot (\vec{q} \times \vec{v}^\perp)$$

Phys. Rev. D 109, 092003 (2024) - First constraints on WIMPnucleon effective field theory couplings in an extended energy region from LUX-ZEPLIN

Phys. Rev. D 109, 112017 (2024) - Effective field theory and inelastic dark matter results from XENON1T

Effective Field Theories

	Scattering	Absorption	Scattering
Nuclear Recoil	[1203.3542] The Effective Field Theory of Dark Matter Direct Detection		
Electron	[1912.08204] Atomic responses to general dark matter- electron interactions [2105.02233] Crystal responses to general dark matter- electron interactions [2407.14598] The Non-Relativistic Effective Field Theory Of Dark N	Aatter-Electron Interactions	
Phonon	• G. Krnjaic, D. Rocha, T. Trickle		
	[2009.13534] Effective Field Theory of Dark Matter Direct	 [2308.06314] Effective Field Theory for Dark Matter Absorption on Single Phonons A. Mitridate, K. Pardo, T. Trickle, K. Zurek 	
Magnon	 <u>Detection With Collective Excitations</u> T. Trickle, Z. Zhang, K. Zurek 		

Theory of Direct Detection For The Next Generation

Dark

NR EFT Of Dark Matter-Electron Interactions

UV/High-Energy $(E \gg m_e)$ Theory

NR/Low-Energy $(E \ll m_e)$ Theory

[2407.14598] The Non-Relativistic Effective Field Theory Of Dark Matter-Electron Interactions

G. Krnjaic, D. Rocha, T. Trickle ٠

ttrickle@fnal.gov

NR EFT Of Dark Matter-Electron Interactions

UV/High-Energy
$$(E \gg m_e)$$
 Theory
 $\delta \mathcal{L}_{UV} = \bar{\Psi} \mathcal{O}_{UV} \Psi \longrightarrow \delta \mathcal{L}_{NR} = \psi^{\dagger} \mathcal{O}_{NR} \psi$

How to map $\Psi \to \psi$? $\mathcal{L}_{\rm UV} = \bar{\Psi}(i\not{\!\!D} - m_e)\Psi \longrightarrow \mathcal{L}_{\rm NR} = \psi^{\dagger} \left[i\partial_t - \frac{\mathbf{p}^2}{2m_e} - V + \cdots\right]\psi$

more generally, NRQED

Applying the map,

$$\mathcal{O}_{\rm NR} \approx \operatorname{Tr}\left[P_+\left(\mathcal{O}_{\rm UV} + \frac{i}{2m_e}\{\gamma^i D_i, \mathcal{O}_{\rm UV}\} - \frac{1}{8m_e^2}\{\gamma^i D_i, \{\gamma^j D_j, \mathcal{O}_{\rm UV}\}\} - \frac{ie}{4m_e^2}\{\gamma^0 \gamma^i F_{0i}, \mathcal{O}_{\rm UV}\}\right)\right]$$

+ Order m_e^{-3}

[2407.14598] The Non-Relativistic Effective Field Theory Of Dark Matter-Electron Interactions

• G. Krnjaic, D. Rocha, T. Trickle

ttrickle@fnal.gov

NR EFT Of Dark Matter-Electron Interactions

Feynman rule factorizes to DM-model dependent and target dependent pieces.

[2407.14598] The Non-Relativistic Effective Field Theory Of Dark Matter-Electron Interactions

• G. Krnjaic, D. Rocha, T. Trickle

ttrickle@fnal.gov

Screening Effects in the EFT

What models are screened?

Those with non-zero mixing with the photon.

*in simple targets**

Other Interesting Directions

Calibrating results to data

[2101.08275] Dark matter-electron scattering in dielectrics [2101.08263] Determining Dark Matter-Electron Scattering

Rates from the Dielectric Function

Other physical effects

Migdal Effect

[1908.10881] On the relation between Migdal effect and dark matter-electron scattering in isolated atoms and semiconductors

[2210.06490] The Migdal Effect in Semiconductors for Dark Matter with Masses below \$\sim \,\$100 MeV

Boosted Dark Matter

[2404.10066] Solar reflection of dark matter with dark-photon mediators

Dark Thomson

[2109.08168] Impact of Dark Compton Scattering on Direct Dark Matter Absorption Searches

measurable

[2407.14598] The Non-Relativistic Effective Field Theory Of Dark Matter-Electron Interactions

G. Krnjaic, D. Rocha, **T. Trickle**

Daily Modulation

[2212.04505] Directional detection of dark matter with anisotropic response functions

High-Frequency GWs

[2311.17147] Searching for High Frequency Gravitational Waves with Phonons

• Y. Kahn, J. Schutte-Engel, T. Trickle

Theory of Direct Detection For The Next Generation

ttrickle@fnal.gov

Dark photon scattering rate

 $\Gamma(\mathbf{v}_{\chi}) = \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} |V(\mathbf{q})|^2 \left[2\frac{q^2}{e^2} \operatorname{Im} \left(-\frac{1}{2} \right) \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \right] \left[\frac{1}{2} \left[\frac{q^2}{e^2} \right] \left[\frac{q^2}{e^2} \right$

Summary

• The next generation of direct detection experiments will rely on low-energy excitations.

• Electrons, phonons, and magnons are kinematically well-matched to light dark matter, and can probe complementary parts of parameter space.

• Effective field theory is a useful tool for parameterizing all potential signatures.

$$\delta \mathcal{L}_{\rm UV} = \bar{\Psi} \,\mathcal{O}_{\rm UV} \,\Psi \longrightarrow \,\delta \mathcal{L}_{\rm NR} = \psi^{\dagger} \,\mathcal{O}_{\rm NR} \,\psi$$

$$\mathcal{O}_{\rm NR} \approx \operatorname{Tr}\left[P_+\left(\mathcal{O}_{\rm UV} + \frac{i}{2m_e}\{\gamma^i D_i, \mathcal{O}_{\rm UV}\} - \frac{1}{8m_e^2}\{\gamma^i D_i, \{\gamma^j D_j, \mathcal{O}_{\rm UV}\}\} - \frac{ie}{4m_e^2}\{\gamma^0 \gamma^i F_{0i}, \mathcal{O}_{\rm UV}\}\right)\right]$$