Dark Sectors at the Intensity Frontier

Nikita Blinov

Dark Interactions 2024

Beyond the Standard Model

Gauge interactions in the SM are sizeable

$$
g(m_t) \sim 0.3 - 1
$$

Beyond-SM particles with SM gauge charges are severely constrained

 $m_{\text{BSM}} < 100 \text{ GeV} - \text{few TeV}$ excluded

New particles without SM gauge interactions are much less constrained → Dark Sector

Searching for dark sector particles tests:

- 1) Extensions of SM effective theory with new light degrees of freedom
- 2) Minimal/simple dark matter models
- 3) Solutions to experimental anomalies

Motivation 1: Tests of generic extensions of the SM EFT

1. SM Effective Field Theory

 $aF_{\mu\nu}\widetilde{F}^{\mu\nu}$

SM is fully determined by symmetry, field content and renormalizability.

Only a handful of low-dimensional connections to potential new particles – study these first!

 $V_\mu J^\mu$ $Dark vectors \Rightarrow$ Coupling to conserved currents

- Higgs portal scalar \Rightarrow Coupling to fermions $|H|^2\phi^2$
- $Right$ -handed neutrino \Rightarrow Coupling to neutrinos LHN_B
	- Pseudo-scalar \Rightarrow Coupling to gauge bosons
		- Batell, Pospelov & Ritz (2009) 5 / 41

Example: Lmu – Ltau Gauge Boson

Massive vectors coupled to conserved currents:

$$
\mathcal{L} \supset g_{\mu\tau} V_{\alpha} J_{L_{\mu}-L_{\tau}}^{\alpha} = g_{\mu\tau} V_{\mu} (\bar{\mu} \gamma^{\alpha} \mu + \bar{\nu_{\mu}} \gamma^{\alpha} P_{L} \nu_{\mu} - \mu \leftrightarrow \tau)
$$

Bauer, Foldenauer and Jaeckel '18

Lmu-Ltau Parameter Space

Different experiments needed to access different regions of parameter space

Why Intensity Frontier

Ideal tool to search for particles mass in MeV \sim GeV: 1) Rates can be larger than at high energy colliders

$$
N_{\rm evt} = \sigma_{\rm DS} \mathcal{L} \qquad \sigma_{\rm DS}^{\text{(fixed target)}} \sim \frac{g_{\mu\tau}^2}{m_V^2}
$$

$$
\mathcal{L} \sim 10^3 \text{ ab}^{-1} \left(\frac{N_{\rm POT}}{10^{20}}\right) \left(\frac{n_T}{10^{23} \text{ cm}^3}\right) \left(\frac{L}{1 \text{ m}}\right)
$$

Batell, Pospelov & Ritz (2009)

 Ω

2) Unique sensitivity to low energy scales

via high shielding, forward detectors,...

$$
m_{e^+e^-},\mathrel{\rlap{\,/}E},\,p_T,\;\ldots
$$

But colliders can provide complimentary sensitivity, cf. BaBar, LHCb, FASER $8/41$

Search Strategies

But also: precision SM measurements, neutrino tridents, $cosm^2\theta$...

Motivation 2: Simple Models of Dark Matter

Thermal Dark Matter: Freeze-out

Light DM can be produced via freeze-out of annihilations in to SM particles (like WIMPs!)

Chemical decoupling $($ = freeze-out) must occur to get just the right amount of DM

Correct abundance if

\n
$$
\langle \sigma v \rangle \approx \left(\frac{1}{20 \text{ TeV}} \right)^2 \sim \frac{\lambda^4}{m^2}
$$

11 / 41

2. Thermal Dark Matter

For sub-GeV DM, this requires a dark sector

Signals of Freeze-Out

Other Approaches to Thermal DM

Many other implementations of light DM production

E.g. Strongly Interacting Massive Particles (SIMPs)

Carlson, Machacek and Hall (1992); Hochberg, Kuflik, Volansky and Wacker (2014)

Chemical equilibrium (within the DS) Kinetic equilibrium (with the SM)

These models are realized in strongly-coupled sectors

Qualitatively different signatures at FT experiments

Specific examples: see, e.g., Hochberg, Kuflik & Murayama (2015); Berlin, NB, Gori, Schuster & Toro (2018); Hochberg, Kuflik, McGehee, Murayama & Schutz (2018)++ 14 / 41

Kinetic Equilibrium via an ALP

Mediator mass

Hochberg, Kuflik, McGehee, Murayama & Schutz (2018)

Photon coupling

15 / 41

Other Signals of DM

In addition to missing X, rescattering "rich" dark sectors offer new signals:

• Visible long-lived mediator decays $m_{\text{med}} < 2m_{\text{DS}}$

Essig, Schuster, Toro '09; Cohen, Lisanti, Lou '15 $++$; Berlin NB, Gori, Schuster & Toro '18; Mohlabeng '19

Also see Deepak Kar's talk on Thursday 16/41

Motivation 3: Solutions to experimental anomalies

Anomaly: g-2

Several experimental anomalies can be explained with new light physics. See, e.g., Harris, Schuster & Zupan '22

E.g. muon g-2:

$$
\langle \mu_{p_2} | J^{\mu}(0) | \mu_{p_1} \rangle = \bar{u}_{p_2} \Big[F_D(q^2) \gamma^{\mu} + F_P(q^2) \, \frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} \Big] u_{p_1} \\[0.2cm] g \, - \, 2 \equiv F_P(0)
$$

Melnikov & Vainshtein '06

$$
a_{\mu}
$$
(Exp) – a_{μ} (Theory) = (251 ± 59) × 10⁻¹¹

(but see recent lattice results: Borsanyi et al '20)

Kinoshita & Marciano '90 Contributions from new scalars, vectors can resolve discrepancy Kinoshita & Marciano '90 18 / 41

Testing g-2

Low mass explanations of g-2 can be tested with FT. Even minimal ones, **only** with couplings to muons

Anomaly: Hubble Tension

Self-interacting neutrinos modify extraction of H_0 from CMB

Cyr-Racine & Sigurdson (2013)++; Kreisch, Cyr-Racine & Doré (2019)

 g_{ϕ}

Prediction: light neutrino-coupled particle Scalar (Majoron), vector (Lmu-Ltau) $\frac{10^{-3} - 10^{-2}}{10^{-3} - 10^{-2}} \frac{1}{10^{-1} - 1} \frac{1}{20} \frac{10^{2}}{41}$

Precision measurements of SM @ intensity frontier rule out this as an explanation of the Hubble tension There is a well-developed science case for various kinds of fixed-target experiments

Many experiments are planned or are operating.

Theory Challenge 1: Angular Distributions

Signal rates are very sensitive to angular distribution

NB, Fox, Kelly, Machado and **Plestid**

23 / 41

Theory Challenge 2: Simulation Difficulties

Common approx. and MC software often inadequate

Tsai '89, Bjorken, Essig, Toro and Schuster '09; Liu, McKeen & Miller '16,'17'; $++$

NB with Patrick Fox, Kevin Kelly, Pedro Machado and **Ryan Plestid**

24 / 41

Theory Challenge 3: Many Production Modes

Many processes enabled by secondaries from hadronic and EM showers

 $eZ \rightarrow eZ + V$ $\mu Z \rightarrow \mu Z + V$ $pZ \rightarrow pZ + V$ $e^+e^- \to V(\gamma) \qquad \gamma e \to e + V$

 $meson \rightarrow SM + V$

Marsicano et al 18; Nardi et al '18; Celentano et al '20; Capozzi et al '21 NB, Fox, Kelly, Machado, Plestid & Zhou '24

Esp. important for thick targets. Their inclusion can substantially improve reach**. See talk by Ryan Plestid.** 25 / 41

Conclusion

• Fixed target experiments are useful

New probes of DM, anomalies, EFT operators

• A broad portfolio of these experiments will answer many important questions in the **near term**

See talk by Kate Pachal for concrete examples

Better modelling is needed for reliable predictions

Production modes have been neglected, numerous approx. used

See talk by Ryan Plestid

Thank you!

Appendix

Some History

One of the oldest experimental tools:

- 1900s Rutherford Gold Foil Experiments and discovery of the nucleus
- 1950s Bubble chambers and meson spectroscopy
- 1960s electron-proton deep inelastic scattering
- 1960s searches for charges $e/3$ and $2e/3$, $++$

DUNE and Other Neutrino Experiments

Neutrino sources are FT experiments

Applications of DUNE ND to BSM: Berryman et al '19

Beyond-SM searches for "free"!

See also deNiverville, Pospelov & Ritz '11++; MiniBooNE DM Results '18, Batell, Berger & Ismail '19...

Intensity Frontier Today

Many proposed or currently-running facilities

Dark Photon-Coupled DM

Berlin, NB, Krnjaic, Schuster & Toro '18 ; Krnjaic, Toro et al (2207.00597)

31 / 41

Lmu-Ltau-coupled DM

Krnjaic, Marques-Tavares, Redigolo & Tobioka '19

32 / 41

Krnjaic, Marques-Tavares, Redigolo & Tobioka '19 NB, Hamer & Gori '24

Difficulties In Modeling Signal

Signal rate in a detector sensitive to both SM and BSM dynamics. Surprisingly challenging to predict:

1) **SM simulation effectively a black box**

Many models/approximations in GEANT, FLUKA

2) **BSM processes often difficult for off-the-shelf codes**

Kinematic singularities, in-medium propagation effects

3) **No standard tool chain, a la collider physics:**

MadGraph+Pythia+DELPHEs

Colangelo et al '22 (2203.15810)

Peaks in the Power Spectrum

Peak **position** depends on contents of the universe and evolution of density perturbations

See, e.g., Pan, Knox, Mulroe & Narimani (2016)

The Sound Horizon

$H_{\overline{0}}$ is **inferred** from the angular scale of CMB fluctuations $\theta_s \sim r_s/D_A$ where

Depends on evolution **before** recombination

Distance to the CMB

$H_{\overline{0}}$ is **inferred** from the angular scale of CMB fluctuations $\theta_s \sim r_s/D_A$ where $P_{\text{Rick}}/E_{\text{S}}$

$$
D_A = \text{distance to CMB} \propto H_0^{-1}
$$

Depends on expansion **after** recombination

Hubble from the CMB

$H_{\overline{0}}$ is **inferred** from the angular scale of CMB fluctuations $\theta_s \sim r_s/D_A$ where

$$
H_0 \propto \theta_s/r_s
$$

Inference of H₀ is modified if r_s is changed!

Origin of Phase Shift: Free-streaming Nus

 $\ell_{peak} \approx n(\pi - \delta \varphi)/\theta_s$

• Neutrinos free-stream and make up about 41% of the energy density at early times

Standard assumption: neutrinos do not self-scatter

Origin of Phase Shift: Free-streaming Nus

 $\ell_{peak} \approx n(\pi - \delta \varphi)/\theta_s$

• Neutrinos free-stream and make up about 41% of the energy density at early times

Standard assumption: neutrinos do not self-scatter

• No free-streaming if neutrinos self-interact

This changes the $\begin{array}{ccc} \text{expected phase shift!} & \begin{array}{ccc} \text{S} & \text{S} & \text{40} & \text{41} \\ \end{array} \end{array}$

Solving the Hubble Tension

- Modifying amount of neutrinos changes the sound horizon
- Neutrino self-interactions can prevent free-streaming

$$
\ell_{peak} \approx n(\pi-\delta\varphi)\frac{D_A}{r_s}
$$

Changing neutrino properties modifies inference of H0 !