

2024/10/16

Direct Searches for Sub-GeV Dark Matter

Jodi Cooley

Executive Director | SNOLAB Professor of Physics | Queen's University Adjunct Research Professor SMU

Direct Detection Landscape

Observable recoil energy:

$$E_{R} = \frac{1}{2} \frac{\Delta p^2}{m_N} \lesssim \frac{2 m_{\rm DM}^2 v_{\rm DM}^2}{m_N}$$

Sub-GeV searches require...

- ultra-low energy thresholds and/or
- light scattering partners and/or
- interaction channels beyond scattering

DM – Nucleon Scattering

Current Status: DM-Nucleon Scattering

DM mass in GeV

Migdal Effect

- DM first scatters on nucleus \rightarrow nucleus recoils
- Perturbation is transferred to electron cloud \rightarrow an electron is kicked out

Dark Interactions 2024 - Jodi Cooley - SNOLAB

arXiv:2406.01705

- Migdal atomic relaxation can lead to keV electron recoil energy for sub-keV nuclear recoils.
- This process has not yet been observed in nuclear recoiling events!

Search for Migdal Effect in LXe

Experimental setup at LLNL

Dark Interactions 2024 - Jodi Cooley - SNOLAB

- Migdal (predicted dotted line)
- Migdal (best fit solid line)

Possible explanations:

- Overestimate of the rate of Migdal ionization in liquid xenon?
- □ Enhanced electronion recombination in the liquid xenon?

A number of groups aim to measure this effect using a variety of targets.

Phonon and Scintillation Signal - CRESST

Dark Interactions 2024 - Jodi Cooley - SNOLAB

CRESST-III

Dark Interactions 2024 - Jodi Cooley - SNOLAB

Target: various crystal materials (CaWO₄, Al₂O₃, LiAlO₂, Si) Sensor: W-TES @ 15 mK **Energy Threshold** : O(10 eV)

SuperCDMS (CPD, OVeV)

- Exposure: 0.4 g*days (OVeV) and 9.9 g*days (CPD)

Dark Interactions 2024 - Jodi Cooley - SNOLAB

SuperCDMS, Phys. Rev. D 105, 112006 (2022)

SuperCDMS is currently in transition between 2 generations (Soudan \rightarrow SNOLAB) Both SuperCDMS-OVeV and SuperCDMS-CPD are 1-10g R&D phonon detectors

DM – electron scattering

Kinematics of DM Scattering

 10^{3} 10² 10¹ Energy [eV] 10^{0} 10^{-1} 10-2 10^{-3} 10 10-2 10^{-1} 100 10¹ 10^{-3} DM Mass [MeV]

Dark Interactions 2024 - Jodi Cooley - SNOLAB

arXiv:2203.08297

Very low momentum transfer to nucleus from low mass dark matter.

$$E_{NR}^{max} = \frac{q2}{2m_N} \sim 1 \,\mathrm{eV}\left(\frac{m_{DM}}{100 \,\mathrm{MeV}}\right) \left(\frac{10 \,\mathrm{GeV}}{m_N}\right)$$

Kinematics of DM Scattering

Dark Interactions 2024 - Jodi Cooley - SNOLAB

arXiv:2203.08297

Very low momentum transfer to nucleus from low mass dark matter.

$$E_{NR}^{max} = \frac{q2}{2m_N} \sim 1 \,\mathrm{eV}\left(\frac{m_{DM}}{100 \,\mathrm{MeV}}\right) \left(\frac{10 \,\mathrm{GeV}}{m_N}\right)$$

Available **dark matter kinetic energy** is **much larger**!

$$E_{kin} = \frac{1}{2} m_{DM} v_{DM}^2 \sim 1 \,\mathrm{eV} \left(\frac{m_{DM}}{1 \,\mathrm{MeV}}\right)$$

Inelastic DM - Electron Scattering

Only need to overcome binding energy:

To make DM << GeV/c² accessible!

Material	Binding Energy		
	(least bound cicciton)		
Atoms	$\mathcal{O}(10 \text{ eV})$		
(e.g. Xe,)			
Insulators	$\mathcal{O}(5 \circ \mathbf{V})$		
(e.g. diamond, NaI)	O(3 eV)		
Semiconductors	$(\Lambda(1 - \mathbf{T}))$		
(e.g. Si, Ge, GaAs)	O(1 ev)		
Low-gap materials			
(e.g. Dirac Materials,	O(fow moV)		
doped semiconductors,			
and superconductors)			

Liquid Nobel 2-Phase Detection Principles

Dark Interactions 2024 - Jodi Cooley - SNOLAB

Sacrifice discrimination for lower threshold by not requiring S1 photons.

S2 Only Seaches – XENON1T

Pros: large exposures, 1-10 mdru modeled background, XY position resolution, and timing. **Cons:** a large unmodeled dark rate, leading to a high analysis threshold (100+ eV), no event discrimination.

Dark Interactions 2024 - Jodi Cooley - SNOLAB

Notation: dru = *differential rate unit* = *count/kg/day/keV*

S2 Only Searches

Agnes et al, PRL 130, 101002 (2023)

CCD Detectors – DAMIC/DAMIC-M and SENSEI

Dark Interactions 2024 - Jodi Cooley - SNOLAB

Interactions with silicon produce free charge carriers....

- are drifted across a fully depleted region (no loss of charge)
- collected in 15 micron pixels *(excellent position resolution)*
- and stored until a user-defined readout time (after many hours)

High spatial and energy resolution but poor time resolution

CCD Detectors: Readout

CCD Detectors: Readout

SENSEI Recent Results:

6 sensors operating at SNOLAB with an exposure of 534.9 gram-days.

Phonon-Based Detectors: SuperCDMS

NTL-Amplification

$$E_{\text{phonon}} = E_{\text{recoil}} + n_{eh} \cdot e \cdot V_{\text{bias}}$$
Neganov-Tr

Dark Interactions 2024 - Jodi Cooley - SNOLAB

rofimov-Luke gain

Phonon-Based Detectors: SuperCDMS

$$E_{\text{phonon}} = E_{\text{recoil}} + n_{eh} \cdot e \cdot V_{\text{bias}}$$

SuperCDMS Status

- Installation at SNOLAB is ongoing!
- Several DM search results published in the past years
- R&D and/or DM search analyses ongoing
- Updates expected in the near future!

Low Energy Excess

Circa 2020: Low Energy Excess

- recoil energy thresholds, down to ~10 eV
- Steeply rising excesses above known backgrounds were observed

Dark Interactions 2024 - Jodi Cooley - SNOLAB

Cryogenic, CCD-like and gaseous ionization detectors had successfully lowered their

EXCESS Workshop Series Began

- In 2021, community effort was started to study the observations & learn more about the new backgrounds.
- physics phenomena" at (partially) low temperatures and energies.

Dark Interactions 2024 - Jodi Cooley - SNOLAB

SciPost Phys. Proc. 9, 001 (2022)

Contents

- 1 Introduction
- 2 Experimental observation of rising low-energy spectra
 - 2.1 Cryogenic Detectors
 - 2.1.1 CRESST-III
 - 2.1.2 EDELWEISS and Ricochet-CryoCube
 - 2.1.3MINER
 - 2.1.4 NUCLEUS
 - SuperCDMS HVeV 2.1.5
 - 2.1.6 SuperCDMS CPD
 - 2.2 CCD detectors
 - 2.2.1 DAMIC
 - 2.2.2SENSEI
 - 2.2.3 Skipper CCD running above ground at Fermilab
 - 2.3 Gaseous ionization detectors
 - 2.3.1 NEWS-G
- 3 Comparison of the measured spectra
- 4 Summary and Outlook

References

"New physics" origin of excesses mostly excluded - but possibly "previously not directly observed

5 6 8

31 31 34

35 38

Some Key Findings

Dark Interactions 2024 - Jodi Cooley - SNOLAB

TESSERACT, arXiv:2208.02790

Excess events can be caused by external stress!

Some Key Findings

- CRESST observed vastly different excess
 rates in detector modules, with no obvious
 dependence on material and target size.
- The event rate decays after the cooldown of the experiment.
- **Hypothesis:** Differential thermal expansion in the various layers of a sensor could introduce stress during thermal cycles

Some Key Findings

Use multiple sensors to identify sensor events

- Singles: events from sensor itself should only show up in that sensor
- Shared: bulk events should be seen by all sensors
- First prototypes tested by CRESST and SPICE

Recent **CRESST results** from observations for shared event low energy excess (LEE):

- decays with time
- is not compatible with noise
- External radiation does not impact the LEE

I

300

CRESST, arXIv:2404.02607v1

Dark Interactions 2024 - Jodi Cooley - SNOLAB

Future Detectors

TESSERACT: SPICE/HeRALD Collaboration

- Sapphire (Al₂O₃) optical phonon modes kinematically-matched to sub-MeV DM (need 10 meV energy thresholds)
- Gallium arsenide (GaAs) scintillation light can be collected in addition to phonon signals, potentially enables discrimination
- Superfluid He (LHe) scintillation, triplet excimer signals, and phonon/rotons provide many signals for strong discriminatory power

Romani – EXCESS 2024

TESSERACT

SPICE – Quasiparticle Detection

Low mass oxygen nuclei as nuclear recoil dark matter target. Can produce optical phonons down to 100s of meV.

- 10-28 **Electron Recoil** (light mediator) 10^{-30 ∟} existing exclusions 10⁻³² 10⁻³⁴ $\sigma_{\rm e} \, [{\rm cm}^2]$ 10⁻³⁶ GaAs 10⁻³⁸ 1 kg-y 2-photon 10⁻⁴⁰ Al₂O₃ 1 kg-y 10 kg-y 1-photo 1 meV 10⁻⁴² 100 kg-y 1-photon 10⁻⁴⁴ 10⁻² 10² 10⁰ 10 10 Dark Matter Mass [MeV]
- Scintillation + phonon signal allows for NR/ER discrimination down to eV scale signals.

Superfluid He - Quasiparticle Detection

- **m**_{DM}
- Kinematics favourable to light DM candidates
- Three signal channels at different times!
 - **Prompt scintillation** (dimer state)
 - Quantum evaporation (phonon/rotons)
 - **Slow scintillation** (trimer state)
- Non-helium impurities freeze out \rightarrow self-shielding!

Superfluid He - Quasiparticle Detection

- **m**_{DM}
- Kinematics favourable to light DM candidates
- Three signal channels at different times!
 - **Prompt scintillation** (dimer state)
 - Quantum evaporation (phonon/rotons)
 - **Slow scintillation** (trimer state)
- Non-helium impurities freeze out \rightarrow self-shielding!
- Sub-GeV dark matter phase space accessible with modest targets.

Superfluid He - HeRALD

Prototype under construction and testing at LBNL

Prompt Triplet Scintillation Scintillation Evaporation 0.6 Baseline-Subtracted TES Trace [µA] 0.5 ⁵⁵Fe 5.9 keV 0.4 Al 1.5 keV 0.3 0.2 0.1 0.0 -0.50 -0.25 0.00 0.25 0.50 1.25 1.50 0.75 1.00 1.75 Time Since Trigger [ms]

SPICE/HeRALD- arXiv:2307.11877

Superfluid He - DElight

Delight, arXiv:2209.10950

Spherical Proportional Counters - NEWS-G

Advantages:

- Low capacitance \rightarrow single electron detection
- Maximal surface to volume ratio
- Variable target

Dark Interactions 2024 - Jodi Cooley - SNOLAB

First preliminary results from SD DMproton scattering searches in methane (CH4) from 10 day run at LSM.

NEWS-G, PoS TAUP2023 (2024) 042 σ_{sD-p} [pb] 10⁶⊨ Borexino CRESST-III-LI J.I. Collar 10^t 10⁴ 10³ 10² CDMS-lite II 10¹ Preliminar 10⁰ **10**⁻¹ pico. 10-2 135 mbar CH_4 10⁻³ 10⁰ 10¹ M_X [GeV] **10**⁻¹

Anode

Central Electrode

Spherical Proportional Counters - Status

First physics run in SNOLAB in 2023 \rightarrow ~20 kg days exposure with Ne:CH₄ mixture. Operations ongoing.

Spherical Proportional Counters - Status

- First physics run in SNOLAB in 2023 \rightarrow ~20 kg days exposure with Ne:CH₄ mixture. Operations ongoing.
- ECuME (& miniECuME):
 - Electroformed 140 cm
 diameter copper sphere in
 SNOLAB + scale model at PNNL
 - STFC funding for ultra-pure
 EFCu facility in Boubly (under construction)
- DarkSPHERE:
 - Fully electroformed 3m of
 diameter sphere + water shield
 in Boulby.

There are many detectors ...

And hopefully, a discovery in the near future!

Experiment	Location	Data Takin	g Readout	Target	Home F
DARKSIDE-20K	Gran Sasso, Italy	2023	scint.+ioniz. ($\sim 85 \mathrm{K}$)	20 t Ar	web
SBC	SNOLAB, Canada	2028	scint. bubble chamb. ($\sim 100 \mathrm{K}$)	$10 \mathrm{kg} \mathrm{Ar}$	talk
ARGO	SNOLAB, Canada	2029	scint.+ioniz. ($\sim 85 \mathrm{K}$)	$300 \mathrm{t}\mathrm{Ar}$	web v
DARKSIDE-LM			scint.+ioniz. ($\sim 85 \mathrm{K}$)	$1.5\mathrm{t}~\mathrm{Ar}$	web
LZ-HydroX	Sanford, SD	202x	ioniz. $+$ scint. (174 K)	$5.5\mathrm{t~Xe}+2\mathrm{kg~H_2}$	web I
DARWIN/XLZD/G3	undetermined	2027/28	scint.+ioniz. ($\sim 170 \mathrm{K}$)	$40 \mathrm{t} \mathrm{Xe}$	web
PANDAX-XT	Jinping, China	202x	scint.+ioniz. ($\sim 170 \mathrm{K}$)	$43\mathrm{t}\mathrm{Xe}$	web
QUEST-DMC	-		quasipart. (~ $100 \mu \text{K}$)	$1\mathrm{cm^{3}~^{3}He}$	paper
DELIGHT		202x	phon.+roton ($\sim 20 \mathrm{mK}$)	$101 \ {}^{4}\mathrm{He}$	web
HERALD		202x	phon.+roton ($\sim 50\mathrm{mK}$)	$\sim 1{ m kg}~{ m ^4He}$	web
SUPERCOMS SNOLAB	SNOLAB, Canada	2023	f ath. phon.[+ioniz.] (15 mK)	11[+14] kg Ge	web [
		2020	l ath. phon.[+ioniz.] (15 mK)	2.4[+1.2] kg Si	
DAMIC-M	Modane, France	2025	ioniz. ($\sim 120 \text{ K}$)	0.7 kg Si	web
OSCURA	SNOLAB, Canada	2029	ioniz. ($\sim 130 \mathrm{K}$)	10 kg Si	web
CDEX-50	Jinping, China	202x	ioniz. ($\sim 90 \mathrm{K}$)	$\sim 300 \mathrm{kg ~Ge}$	web t
EDELWEISS-CRYOSEL	Modane, France	202x	ath. phon. ($\sim 10 \mathrm{mK}$)	$\sim 30{ m g~Ge}$	web
CDEX-300	Jinping, China	2027	ioniz. ($\sim 90 \mathrm{K}$)	$\sim 300 \mathrm{kg} \mathrm{Ge}$	web I
CDEX-1T	Jinping, China	2033	ioniz. ($\sim 90 \mathrm{K}$)	$\sim 1\mathrm{t~Ge}$	web I
CDEX-10T	Jinping, China	2040	ioniz. $(\sim 90 \text{ K})$	$\sim 10 \mathrm{t~Ge}$	web I
COSINE-200	Yemilab, South Korea	2024	scint. ($\sim 300 \mathrm{K}$)	$\sim 200 \mathrm{kg} \mathrm{NaI(Tl)}$	web t
COSINUS	Gran Sasso, Italy	2024	scint. (~ $10 \mathrm{mK}$)	$\sim 1 \mathrm{kg} \mathrm{NaI}(\mathrm{Tl})$	web
SABRE 5	Gran Sasso, Italy	2024	scint. ($\sim 300 \mathrm{K}$)	$50 \mathrm{kg} \mathrm{NaI}(\mathrm{Tl})$	web
	SUPL, Australia	2023	scint. ($\sim 300 \mathrm{K}$)	$50 \mathrm{kg} \mathrm{NaI}(\mathrm{Tl})$	web l
PICOLON	Kamioka, Japan	202x	scint. ($\sim 300 \mathrm{K}$)	$54 \rightarrow 250 \mathrm{kg} \mathrm{NaI(Tl)}$	paper [
KAMLAND-PICO	Kamioka, Japan	203x	scint. ($\sim 300 \mathrm{K}$)	$1000 \mathrm{kg} \mathrm{NaI}(\mathrm{Tl})$	paper
DMICE-250	South Pole		scint. (~ $260 \mathrm{K}$)	$\sim 200 \mathrm{kg} \mathrm{NaI(Tl)}$	talk t
PICO-40L	SNOLAB, Canada	2023	bubble chamber ($\sim 290 \mathrm{K}$)	$\sim 50 \mathrm{kg} \mathrm{C_3F_8}$	web
PICO-500	SNOLAB, Canada	202x	bubble chamber ($\sim 290 \mathrm{K}$)	$360 \mathrm{kg} \mathrm{C}_3 \mathrm{F}_8$	web
MOSCAB	Gran Sasso, Italy	202x	bubble chamber ($\sim 290 \mathrm{K}$)	$2 \rightarrow 251 \mathrm{C}_3 \mathrm{F}_8$	paper
MIMAC	Grenoble, France		ioniz. ($\sim 300 \mathrm{K}$)	$\mathrm{CF}_4\mathrm{+}\mathrm{CHF}_3$	paper
NEWS-G : ECUME	SNOLAB, Canada		ioniz. ($\sim 300 \mathrm{K}$)	$\sim 2 \mathrm{kg} \mathrm{CH}_4$	web
NEWS-G : DARKSPHERE	Boulby, UK		ioniz. ($\sim 300 \mathrm{K}$)	$27\mathrm{kg}~\mathrm{He+C_4H_{10}}$	web
CYGNO	Gran Sasso, Italy	2024	ioniz. ($\sim 300 \mathrm{K}$)	$1\mathrm{m^3~He+CF_4}$	web
CYGNUS	multiple sites		ioniz. ($\sim 300 \mathrm{K}$)	$10^3 \mathrm{m}^3 \mathrm{He} + \mathrm{SF}_6 / \mathrm{CF}_4$	web
SNOWBALL			supercooled liq. ($\sim 250 \mathrm{K}$)	$1 \mathrm{kg} \mathrm{H}_2\mathrm{O}$	talk
ALETHEA			scint.+ioniz. ($\sim 4 \mathrm{K}$)	$10 \mathrm{kg} \mathrm{He}$	paper [
TESSERACT			ath. phon.	Al_2O_3 , GaAs, He	web I
SPLENDOR			ioniz	$Eu_5In_2Sb_6$, $EuZn_2P_2$	poster I
WINDCHIME			accelerometers		paper [

Dark Interactions 2024 - Jodi Cooley - SNOLAB

Snowmass CF1 WP2 (2022) [arXiv:2203.08297]

Coming Dark Matter Day 2024!

