Dark Sectors with LHCb and Beyond

Philip Ilten

University of CINCINNATI

October 17, 2024

DARK INTERACTIONS 2024

Hidden Sectors

broken U(1) gauge symmetry in dark sector
allow mixing between dark and SM hypercharge fields

$$\mathcal{L} \supset -\frac{1}{4}F_{\mu
u}F^{\mu
u} - \frac{1}{4}F'_{\mu
u}F'^{\mu
u} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} + g_eJ^{\mu}A_{\mu} + gg_eJ^{\mu}A'_{\mu}$$

Dark Photons

mass of the dark photon, m_{A'}, and mixing, g, are free parameters
the dark photon couples like the photon, modified by g
if m_{A'} < 2m_{DM} then dark photon decays visibly

- what happens if **2** and **3** are relaxed?
- require $m_{A'}$, g, 12 fermion couplings, and an invisible width
- dark photon limits can be recast to any general vector model

Parameter Space

Lifetime

Decay Products

Search Strategies

- EM background free
- difficult to normalize

- sensitive to shorter lifetimes
- bump hunt on large EM background
- normalized from sidebands
- do both simultaneously for best of both worlds

Production: Electron Bremsstrahlung

Production: Proton Bremsstrahlung

Production: Hadron Decays

Production: Electron-Positron Annihilation

Searching with LHCb *in theory* ...

Ilten, Soreq, Thaler, Williams, Xue Phys. Rev. Lett. **116**, no. 25, 251803 (2016)

Ilten, Thaler, Williams, Xue Phys. Rev. D **92**, no. 11, 115017 (2015)

LHCb Detector

Good Backgrounds (prompt)

Signal (prompt and displaced)

Bad Backgrounds (prompt)

 $N_{\rm signal}$ is not proportional to $N_{\rm bad}$ LHCb mis-ID probability ≈ 1 out of 1000

Production in Theory

Reach (prompt) in Theory

Bad Backgrounds (*displaced*)

Reach (displaced) in Theory

Full Reach in Theory

Searching with LHCb in practice ...

LHCb Collaboration Phys. Rev. Lett. **120**, no. 6, 061801 (2018)

> LHCb Collaboration JINST **13**, no. 06, P06008 (2018)

LHCb Collaboration Phys. Rev. Lett. **124**, no. 4, 041801 (2020)

LHCb Collaboration JHEP **10**, 156 (2020)

Real Data (prompt)

Dark Sectors with LHCb and Beyond

Limits (prompt)

Real Data (displaced)

VELO Sensors

RF Foil

Bad Backgrounds (*displaced*)

Limits (displaced)

Dark Photons and beyond ...

Ilten, Soreq, Williams, Xue JHEP **1806**, 004 (2018)

Cid Vidal, Ilten, Plews, Shuve, Soreq Phys. Rev. D **100**, no. 5, 053003 (2019)

> Baruch, Ilten, Soreq, Williams JHEP 11, 124 (2022)

DARKCAST

• recast to any general model, e.g. 15 free parameters

- available at gitlab.com/philten/darkcast
 - accompanying papers Serendipity in dark photon searches and Axial vectors in Darkcast

The Recipe

- given (m, g_A) for model A, solve to find (m, g_B) for model B $\sigma_A(m, g_A)\mathcal{B}_A(m)\varepsilon(\tau_A(m, g_A)) = \sigma_B(m, g_B)\mathcal{B}_B(m)\varepsilon(\tau_B(m, g_B))$
- absolute cross-section can be tricky, ratios are easier

$$\frac{\sigma_A(m,g_A)}{\sigma_B(m,g_B)} \frac{\varepsilon(\tau_A(m,g_A))}{\varepsilon(\tau_B(m,g_B))} \frac{\mathcal{B}_A(m)}{\mathcal{B}_B(m)} = 1$$

branching fraction ratio: hidden local symmetries
cross-section ratio: hidden local symmetries

 $V \in (\rho, \omega, \phi, K^*, \bar{K}^*)$ generated from $U(3)_V$

3 efficiency ratio: define proper time fiducial region with t_0 and t_1

$$\varepsilon(\tau) = e^{-t_0/\tau} - e^{-t_1/\tau}$$

Widths

• width can be calculated perturbatively for fermions

$$\Gamma_{ff}(\boldsymbol{m}, \boldsymbol{g}) = \frac{\boldsymbol{g}^2 c_f \left(\boldsymbol{x}_V^f\right)^2}{12\pi} \boldsymbol{m} \left(1 + \frac{m_f^2}{\boldsymbol{m}}\right) \sqrt{1 - 4\frac{m_f^2}{\boldsymbol{m}}}$$

- but ... below 2 GeV this prediction is no longer reliable
- use data instead!

$$\Gamma_{\text{hadrons}}(\boldsymbol{m}, \boldsymbol{g}) = \Gamma_{\mu\mu}(\boldsymbol{m}, \boldsymbol{g}) \mathcal{R}(\boldsymbol{m}) + \frac{g^2 \boldsymbol{m}}{4\pi} \bigg[(x_A^u - x_A^d)^2 a_1(\boldsymbol{m}^2) + (x_A^s)^2 \Theta(\boldsymbol{m}^2 - 4m_K^2) \times \left(\frac{1}{4} a_1(\boldsymbol{m}^2) + a_1^s(\boldsymbol{m}^2) - \cos(\phi) \sqrt{a_1(\boldsymbol{m}^2)a_1^s(\boldsymbol{m}^2)} \right) \bigg]$$

- $\mathcal{R}(\underline{m})$ is $\sigma(ee \to \text{hadrons}) / \sigma(ee \to \mu\mu)$
- + $a_1^{(s)}(m)$ are τ axial spectral functions from ALEPH

Beyond Dark Photons

The Data!

Beyond Dark Photons

The Data!

BBoson

A Special Case

- *true* muonium is a $\mu^+\mu^-$ state, not yet observed!
- different spin configurations, most abundant are 1S_0 and 3S_1
- ${}^1S_0 \to \gamma\gamma$ and ${}^3S_1 \to e^+e^-$

$$E_B \approx m_\mu \alpha^2 / 4 = 1.41 \,\mathrm{keV}$$

$$m_{\mathcal{TM}} \approx 2m_{\mu} - E_B \approx 211 \,\mathrm{MeV}$$

$$g_{TM} \approx \alpha^2/2 \approx 2.66 \times 10^{-5}$$

$$\tau_{\mathcal{TM}} \approx \frac{6}{\alpha^5 m_{\mu}} \approx 1800 \text{ fs}$$

Zooming In

LHCb and beyond ...

CODEX-b Collaboration Eur. Phys. J. C **80**, no. 12, 1177 (2020)

CODEX-b Collaboration arXiv:2406.12880 [physics.ins-det]

Mind the Coverage Gap

• there is a large gap in search parameter space

Mind the Coverage Gap

• the LHC accesses unique high COM

A Modest Proposal

- need low background large volume detector
- use space around LHCb \rightarrow CODEX-b proposal

Dark Photon Again

• example coverage from non-minimal dark photon production via the SM Higgs

Building It!

- CODEX- β approved as time limited LHCb R&D project
- independent of LHCb, including members from CMS and ATLAS

CODEX-b Collaboration

- CODEX-b collaboration is always looking for collaborators!
- MATHUSLA and ANUBIS are also excellent off-axis opportunities

Conclusions

- LHCb search with $\approx 4\%$ of Run 2 + Run 3 data is promising
- DARKCAST at gitlab.com/darkcast/releases
- true muonium is within reach at LHCb
- off-axis (transverse) detectors necessary for LLPs at high \sqrt{s}

Appendix

New Physics in TM

Data Taking

Hidden Symmetries

- but what about flavor dependent couplings?
- use hidden local symmetries framework for VMD
- vector mesons $V\in(\rho,\omega,\phi,K^*,\bar{K}^*)$ are gauge bosons of hidden $U(3)_V$ symmetry
- vertices take the form PV_iV_j with P from the pseudoscalar nonet $P\in(\pi,\eta,\eta',K,\bar{K})$

$$\operatorname{Tr}(T_{V_i}, T_{V_j}, T_P)$$

- T are the meson generators, e.g. $T_{\omega} = \frac{1}{2}(1,1,0)$
- external gauge fields mix through V

 $\operatorname{Tr}(T_V, Q)$

• Q is the fermion coupling vector (Q_u, Q_d, Q_s)

Vector Decomposition

B-L Boson

B Boson

Protophobic Boson

Production Ratios

• electron-positron annihilation and electron bremsstrahlung

$$\frac{\sigma_A(m, g_A)}{\sigma_B(m, g_B)} = \frac{g_A{}^2 Q_A^{e\,2}}{g_B{}^2 Q_B^{e\,2}}$$

• proton bremsstrahlung

$$\frac{\sigma_A(m,g_A)}{\sigma_B(m,g_B)} = \frac{g_A{}^2(2Q_A^u + Q_A^d)^2}{g_B{}^2(2Q_A^u + Q_A^d)^2}$$

• hadron decays of the form $X \to YA$

$$\frac{\sigma_A(\boldsymbol{m}, \boldsymbol{g}_A)}{\sigma_B(\boldsymbol{m}, \boldsymbol{g}_B)} = \frac{g_A^2 \sum_V \operatorname{Tr}(T_X, T_Y, T_V) \operatorname{Tr}(T_V, Q_A) \operatorname{BW}_V(\boldsymbol{m})}{g_B^2 \sum_V \operatorname{Tr}(T_X, T_Y, T_V) \operatorname{Tr}(T_V, Q_B) \operatorname{BW}_V(\boldsymbol{m})}$$

LHCb Production Fractions

- templates taken from Monte Carlo and fit against LHCb result

Efficiencies

- define proper time fiducial region with t_0 and t_1

$$\varepsilon(\tau) = e^{-t_0/\tau} - e^{-t_1/\tau}$$

- for prompt limits, $t_0 = 0$ and t_1 depends on the boost

$$t_1 = \frac{L_{\max}}{\gamma}$$

- for displaced beam-dump limits, relate t_0 and t_1

$$t_1 = t_0 + \frac{L_{\text{detector}}}{L_{\text{shield}}}$$

 \rightarrow upper and lower limits are solutions, equate and solve for t_0 :

$$\sigma(m, g_{\max})\mathcal{B}(m)\varepsilon\left(\tau(m, g_{\max})\right) = \sigma(m, g_{\min})\mathcal{B}(m)\varepsilon\left(\tau(m, g_{\min})\right)$$

B-L Boson

B Boson

Protophobic Boson

Mind the Gap

What's in an Event?

• need final states that produce di-electrons

meson	meson/event	e^+e^- /event
π^+	$1.27 imes 10^1$	_
π^0	$7.08 imes 10^0$	$8.50 imes 10^{-2}$
$ ho^+$	$1.96 imes 10^0$	$2.36 imes10^{-2}$
K^+	1.44×10^0	_
$ ho^0$	1.02×10^0	2.36×10^{-5}
ω	9.87×10^{-1}	1.24×10^{-2}
n	9.71×10^{-1}	—
p	$9.51 imes 10^{-1}$	—
η	$8.31 imes 10^{-1}$	$1.80 imes 10^{-2}$
K_S^0	$7.08 imes 10^{-1}$	$5.25 imes 10^{-3}$
K_L^0	7.07×10^{-1}	_

$e^+e^-\gamma$ Production

Dissociation

Detector Effects: Case (i)

Detector Effects: Case (ii)

Discovery Potential

A Large Cube

- + $10 \times 10 \times 10$ m baseline configuration
- use resistive plate chambers (1 mm spatial and 100 ps timing)
- sensitive to LLP masses via opening angle of LLP decay

Raising the Shields

• active shielding is necessary for background reduction

Raising the Shields

• target less than one event over entire run of CODEX-b

Models Overview

• CODEX-b has sensitivity to a wide variety of general and specific models

Dark Photon

• production via the SM Higgs makes this currently only possible at the LHC
Higgs Portal

 $\lambda = 1.6 \times 10^{-3}$

• searches via B decays, limits from LHCb are lifetime constrained

Conclusions

Heavy Neutral Leptons

• large portions of HNL space remain unexplored

Conclusions

Fermion Coupled Axion-Like Particles

• ALPs can both provide a dark matter candidate and "clean up" the strong CP problem