

# Long-lived particles as a key to the dark sector: Searches with CMS



Juliette Alimena (DESY) Dark Interactions Workshop Simon Fraser University, Vancouver, BC, Canada October 17, 2024

### **Timely Workshop...**

## Dark Interactions 2024 Vancouver, Oct. 16-18

### **CMS Dark Sectors Review Paper**

- CMS has a rich search program for particles and forces in dark sectors
- Idea: Summarize this dark sector search program and draw overall conclusions in a review paper
- Now accepted by Phys. Rept. and on the arXiv (<u>2405.13778</u>)
- Will report today on the long-lived particle searches in the dark sector (~1/3 of analyses in this paper)



### **Dark Sectors**

- Pair-production of dark matter (DM) at colliders
  - Signature: missing transverse energy recoiling against SM particle
- Simplified dark sectors
  - Usually have a DM candidate + a mediator particle (could also be BSM)
- Extended dark sectors
  - Could be more complicated dark scenarios with rich dynamics



### Simplified and Extended Dark Sectors



### Simplified and Extended Dark Sectors



## What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

decays a reconstructable distance from the primary collision

or

is quasi-stable on the scale of the detector

## What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

decays a reconstructable distance from the primary collision

or

is quasi-stable on the scale of the detector

- They can:
  - be **charged**, neutral or have **color**
  - be light or heavy
  - travel fast or slow
  - decay to anything

## What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

decays a reconstructable distance from the primary collision

or

is quasi-stable on the scale of the detector

- They can:
  - be **charged**, neutral or have **color**
  - be light or heavy
  - travel fast or slow
  - decay to anything
- They often require dedicated searches or dedicated experiments

## Long-Lived Particle Searches

- Wide variety of:
  - Charges
  - Final states
  - Decay locations
  - Lifetimes
- Design signature-driven searches
- Often interpret results with a benchmark model, but can expand to a variety of scenarios
- Jackson has already described many of these signatures already, so I won't repeat them, except...



### **Special Mention: Muon Detector Showers**

- Neutral LLPs with ctau> 1m could decay beyond the calorimeter with:
  - No tracks, no jets, high-multiplicity shower (hundreds of hits per cluster) in the muon system
- Essentially, we use the muon system as a sampling calorimeter
- Unique signature due to the presence of steel in the CMS muon system
- Excellent background suppression from shielding material (background rejection of 1e6)
- Sensitive to hadronic, tau, photon, and electron decays





arXiv:2402.01898

### CMS Run 2 LLP Analyses in the Dark Sector

### **Displaced leptons**

Displaced ee, emu, mumu (EXO-18-003)

Displaced dimuons (EXO-21-006, EXO-23-014)

H to aa to 4mu (HIG-18-003)

Displaced dimuon scouting (EXO-20-014)

### Hadronic LLP decays

Displaced jets (EXO-19-021)

Displaced vertices (EXO-19-013)

Emerging jets (EXO-18-001, EXO-22-015)

Stopped particles (EXO-16-004)

Muon detector showers (EXO-20-015, EXO-21-008)

### LLP + p<sub>T</sub><sup>miss</sup>

Inelastic DM (<u>EXO-20-010</u>)

Delayed jets (EXO-19-001)

Trackless and OOT jets (EXO-21-014)

Displaced vertices + MET (EXO-22-020)

Rather than cover all models and results, I'll **pick a few models** and briefly describe the analyses and results for them

### Hidden Valleys



## Hidden valleys Higgs to long-lived particles (LLPs)

- Hidden valleys: dark sector model with rich dynamics at low energy scales, and accessible at colliders at high energy scales
- LLPs are well-motivated in dark sectors:
  - Heavy mediator connected to SM suppresses decay rates, produces long lifetimes
- Interpretations of LLP searches with hadronic and leptonic decays



Hidden valleys

## Dark Higgs to LLPs to 4b

 $m_{HD} = 800 \text{ GeV}$ 

16

- Reinterpretations of LLP searches with hadronic decays
- Dark Higgs mediator, fully hadronic final states
- Brand new reinterpretations for this paper

**m**<sub>HD</sub> = 400 GeV



## Z' to LLPs to 4b

- Reinterpretations of LLP searches with hadronic decays
- Heavy Z' mediator, fully hadronic final states
- Brand new reinterpretations for this paper



### m<sub>Z'</sub> = 3000 GeV

### m<sub>z'</sub> = 4500 GeV



Hidden valleys

## Dark QCD

- Hidden valleys: dark sector model with rich dynamics at low energy scales, and accessible at colliders at high energy scales
- **Dark QCD**: Simple hidden valley scenario with an additional broken U'(1) gauge group
  - Dark photon can communicate with SM via kinetic mixing
  - Confined in the dark sector
- Rich phenomenology available: dijets, multijets, semivisible jets, emerging jets, etc.



Hidden valleys

## Semivisible Jets (I)

- Two new reinterpretations for this paper:
- Reinterpret dijets and monojet searches in semivisble jet signals
- Dijet search (EXO-19-012): uses full combine datacards for fit & ratio methods
- Mono jet search (EXO-20-004): uses MadAnalysis implementation



Hidden valleys

## Semivisible Jets (II)

లా 0.4

0.35

0.3

0.25

0.2

0.15

0.1

CMS

 $r_{inv} = 0.3$ 

95% CL upper limits

Expected

Dijet

Monojet

 $m_{dark} = 20 \text{ GeV}, r_{inv} = 0.3, \alpha_{dark} = \alpha_{dark}^{peak}$ 

JHEP 05 (2020) 033

JHEP 11 (2021) 153

JHEP 06 (2022) 156

JHEP 06 (2022) 156

Semivisible jet (inclusive)

Semivisible jet (BDT-based, model-dependent)

20

- Reinterpretations of the:
  - Dijet search (EXO-19-012)
  - Mono jet search (EXO-20-004)
  - SVJ search (EXO-19-020: cut-based and BDT-based, model-dependent)





- Bifundamental mediator ( $\Phi$ ) that decays to a jet and an emerging jet
- Reinterpretations of track-based emerging jets search (EXO-22-015: agnostic and GNN, model-dependent) and muon detector showers search (EXO-21-008)
- Brand new reinterpretation for this paper

#### **Extended dark sectors Emerging Jets: SM Higgs Mediator** Dark QCD

- Emerging jet signature: SM Higgs (mediator) decays to dark hadrons
- Muon detector shower search (EXO-21-008) reinterpreted in this emerging jets signature



 $10^{4}$ 

Cτ<sub>11 P</sub> [mm]

### Dark SUSY and HAHM



## Dark SUSY and HAHM

- Summary plot for dark bosons, with LLP searches
- Includes searches involving displaced muons:
  - Displaced dimuons (EXO-21-006): HAHM
  - Displaced dimuons in scouting (EXO-20-014): HAHM
  - Displaced dimuons with 4mu (HIG-18-003): Dark SUSY model



### Stealth SUSY



## Stealth SUSY

 Stealth SUSY search originally optimized for vector portal (2t+6j)

### Stealth SYY (2t+6j)





## Stealth SUSY

- Stealth SUSY search originally optimized for vector portal (2t+6j) but also sensitive to Higgs portal (2t+4b)
- Higgs portal reinterpretation (Stealth SHH) new for this paper





## Stealth SUSY: LLP Reinterpretations

- Consider the case where singlino  $\tilde{S}$  is long-lived
- Includes new reinterpretations of prompt stealth SUSY search and several LLP searches with hadronic decays
- $m_{\tilde{S}}$  = 100 GeV,  $m_{\tilde{G}}$  = 1 GeV,  $m_{S}$  = 90 GeV







## **Stealth SUSY: LLP Reinterpretations**

- Consider the case where singlino  $\tilde{S}$  is long-lived
- Includes new reinterpretations of several LLP searches with hadronic decays
- $m_{\tilde{S}} m_{\tilde{t}} = 225 \text{ GeV}, m_{\tilde{G}} = 1 \text{ GeV}, m_{S} = 90 \text{ GeV}$

Stealth SYY (2t+6j)



### Stealth SHH (2t+4b)

10<sup>5</sup>



### What's next?

### New LLP Triggers in CMS for Run 3 At both L1 (hardware) and HLT (software) levels

- New L1 & HLT triggers for showers in the muon system
- New triggers for **delayed jets**:
  - Using HCAL depth and timing (thanks to HCAL upgrade): L1 & HLT
  - Using ECAL timing: HLT
- New HLT triggers for displaced taus
- New L1 & HLT algorithms for displaced muons





## CMS Phase 2 Upgrade & LLPs

### Level 1 Trigger TDR

- New track trigger at 40 MHz
- 750 kHz L1 output
- 40 MHz data scouting (real time analysis)

## New MIP timing detector (MTD) 4

• 30 ps timing resolution

### Replaced Tracker TDR

- Increased granularity
- Extended coverage to  $|\eta|^{\sim} 4$
- Designed for tracking in L1T

### DAQ & High Level Trigger (HLT) TDR

- Heterogeneous architecture
- 7.5 kHz HLT output

### Barrel Calorimeter TDR

• ECAL crystal granularity readout at 40 MHz with precise timing for e/gamma at 30 GeV

### Muon System TDR

- New Gas Electron Multipliers (GEMs) & new iRPCs  $1.6 < |\eta| < 2.4$
- Extended coverage to  $|\eta|^{\sim}$  3

### New High-Granularity Endcap Calorimeter (HGCAL) <u>TDR</u>

- Imaging calorimeter
- 3D showers and precise timing

### Summary

- Dark sectors paper reviews the impact of 40 CMS Run 2 analyses on the search for dark matter
  - 16 LLP analyses with dark sector interpretations
- Now public!
  - arXiv 2405.13778, accepted by Phys. Rept.
  - <u>CMS physics briefing</u> for the public
- Many new reinterpretations for models with dark photons, 2HDM+a, semi visible jets, emerging jets, stealth SUSY, Higgs to LLP, Z' to LLP, dark Higgs to LLP
- Long-lived particles:
  - Appear in many dark sector models
  - Provide unconventional signatures
  - New triggers for Run 3 and new subdetectors at HL-LHC will increase our ability to look for LLPs
  - A unique key to dark interactions



## Backup



## Z' to LLPs to 2b+MET

- Reinterpretations of LLP searches with hadronic decays
- Heavy Z' mediator, hadronic + p<sub>T</sub><sup>miss</sup> final states
- Brand new reinterpretations for this paper

### m<sub>Z'</sub> = 3000 GeV





## Dark Higgs to LLPs to 2b+MET

- Reinterpretations of LLP searches with hadronic decays
- Dark Higgs mediator, hadronic + p<sub>T</sub><sup>miss</sup> final states
- Brand new reinterpretations for this paper



Simplified dark sectors

Spin 1

Dark Photons

 $10^{-4}$ 

10<sup>-5</sup>

10<sup>-6</sup>

10-7

10<sup>-8</sup>

- Spin-1 mediator with pure vector coupling, mixes with SM photon and Z boson
- Reinterpret monojet search (EXO-20-004) in dark photon model
- Dark photon —> DM (invisible)
- Relic density constraints also shown
- Brand new reinterpretation for this paper



- Dark photon —> visible
- Includes two prompt dimuon analyses including scouting: EXO-21-005 and EXO-19-018





39

## 2HDM+a

- UV complete model
- Extension of two-Higgs-doublet models (2HDM): adds an additional pseudoscalar mediator (a)



- Includes  $h \rightarrow aa$  and  $h \rightarrow inv$  searches
- If a → χχ kinematically allowed, h→inv is most stringent
- Otherwise, visible decays of h are most stringent

