Ultra-light bosons beyond the Standard Model

Asimina Arvanitaki Perimeter Institute for Theoretical Physics

Outline

- The origins of ultra-light boson fields
- Cosmology-independent signatures of ultra-light boson fields
- Ultra-light boson Dark Matter

Why ultra-light bosons?

- Bottom-Up approach: They provide a consistent theoretical framework for BSM physics
- Top-Down approach: They appear as byproducts in many BSM theories, like those trying to explain the flavor problem
- In this talk: My point of view of what constitutes an excellent topdown approach

Why is the Electric Dipole Moment of the Neutron Small?

The Strong CP Problem and the QCD axion

Solution: $\theta_s \sim a(x,t)$ is a dynamical field, an axion

Axion mass from QCD:

$$\begin{split} \mu_a \sim 6 \times 10^{-11} \ \mathrm{eV} \ \frac{10^{17} \ \mathrm{GeV}}{f_a} \sim (3 \ \mathrm{km})^{-1} \ \frac{10^{17} \ \mathrm{GeV}}{f_a} \\ \mathrm{f_a}: \text{axion decay constant} \end{split}$$

Mediates new forces and can be the dark matter

Parameter Space of the QCD axion

A Plenitude of Particles from String Theory

• Extra dimensions

A Plenitude of (Almost*) Massless Particles

- Spin-0 non-trivial gauge field configurations: String Axiverse
- Spin-1 non-trivial gauge field configurations: String Photiverse AA, Craig, Dimopoulos, Dubovsky, March-Russell (2009)
- Fields that determine the shape and size of extra dimensions as well as values of fundamental constants: Dilatons, Moduli, Radion

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

$$e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$$

while

 $\vec{B} = 0$

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy

Solenoid

 \vec{B}

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid $e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$ while $\vec{B} = 0$

Energy stored only inside the solenoid Non-trivial topology: "Blocking out." the core still leaves a non-trivial gauge, but no mass Non-trivial gauge configuration far away carries no energy

String Axion mass and the QCD axion

AA, Dimopoulos, Dubovsky, March-Russell, and Kaloper (2009)

Particle Mass
$$\sim \frac{M_{\text{Planck}}^2 e^{-S/2}}{f_a}$$
 Kallosh et. al. (1995)

Requirements on string theory for QCD axion to solve the strong CP problem

$\theta_{QCD} < 10^{-10}$ String corrections $< 10^{-10} \times QCD$

 $M_{Planck}^4 e^{-S} < 10^{-10} \times m_{\pi}^2 f_{\pi}^2$ Svrcek, Witten (2006)

 $S \gtrsim 200$ $S \sim 2 \pi / \alpha$

The QCD axion should not be special There could be **many** light axions

The String Photiverse

• Mass generated from fluxes

• Seem to require large volume compactifications

The String Photiverse

AA, S. Dimopoulos, G. Villadoro (2014-unpublished)

Expected range of dark photon masses in large volume compactifications

Moduli, the dilaton, Radion

- They are not protected by *any* symmetry
 - Natural value for the mass \geq meV

Damour, Polyakov (1994) Dimopoulos, Giudice (1996)

- They determine the size of extra dimensions, fluxes, fundamental constants
 - Could the mass be associated with the tuning for the cosmological constant?

AA, S. Dimopoulos, V. Gorbenko, J. Huang, K. Van Tilburg (2016)

Axion Couplings

• Axion-photon mixing in a background field

• Axion have an EDM-like coupling to nucleons (in particular for the QCD axion)

• Axion spin coupling to leptons or nucleons

$$\frac{\nabla a}{f_a} \cdot \sigma$$

• Scalar coupling to nucleons in the presence of CP violation (in particular for the QCD axion)

Dark Photon Couplings

• Couples through mixing with the ordinary photon

$$\epsilon(\overrightarrow{E'}\cdot\overrightarrow{E}+\overrightarrow{B'}\cdot\overrightarrow{B})$$

• Dark photon decouples as its mass goes to zero

Moduli, dilatons and other scalars

• Couple non-derivatively to the Standard Model (as well axions with CP violation)

• Examples of couplings

$$\mathcal{L} = \mathcal{L}_{SM} + \sqrt{\hbar c} \frac{\phi}{\Lambda} \mathcal{O}_{SM}$$

$$\mathcal{O}_{SM} \equiv m_e e \bar{e}, \ m_q q \bar{q}, \ G_s^2, \ F_{EM}^2, \dots$$

Outline

- The origins of ultra-light boson fields
- The non-Dark Matter signatures of ultra-light boson fields
- Ultra-light boson DM

Axion signatures independent of cosmology

Light shining through wall experiments

Photon-to-axion conversion in astrophysical environments with magnetic fields

Axion signatures independent of cosmology

Searches for long range forces

Monopole-Dipole Interaction

Mass with N nucleons or nuclear spin-polarized piezoelectric

Spin

 $V(r) \sim \frac{1}{r^2} e^{-m_{\phi} r}$

Dipole-Dipole Interaction

N spins

Spin

Cosmology-independent dark photon signatures

• Short range modifications of Coulomb's law

Cosmology-independent moduli signatures

Modifications of Newton's Law

• Fifth-force searches, and short-range modifications of gravity

$$V(r) \sim \frac{1}{r} e^{-m_{\phi}r}$$

Production in stars and other astrophysical environments

- Stellar cooling/heating
- Supernovae 1987a

• Provide in some cases the most stringent constraints on these particles

Cosmology-independent signatures of all bosons

AA, Dimopoulos, Dubovsky, March-Russell, and Kaloper (2009)

Black hole superradiance

Damour et al; Zouros & Eardley; Detweiler; Gaina (1970s)

Particle Compton Wavelength comparable to the size of the Black Hole

Outline

- The origins of ultra-light boson fields
- The non-Dark Matter signatures of ultra-light boson fields
- Ultra-light boson DM

What If DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy

Usually we think of ...

instead of...

like a WIMP

 $\lambda_{DM} = \frac{\hbar}{m}$ $m_{DM}v$

What If DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy

Equivalent to a Scalar Wave

Light Scalar Dark Matter

• Just like a harmonic oscillator

Initial conditions set by inflation

Light Scalar Dark Matter Today

Inflationary production of dark photon DM

• Fluctuations of a Stuckelberg spin-1 field during inflation

•
$$m_{DM} \approx 10^{-5} \ eV \left(\frac{10^{14} \ GeV}{H_I}\right)^4$$

Graham, Mardon, Rajendran (2015)

- Not clear how this can be reconciled with the string picture
 - Light dark photons require low cutoffs

Axion Dark Matter

Some examples

• Axion-to-photon conversion (ex. ADMX)

Cavity size = Axion size

• Changes the dispersion relation of polarized light

Axion Dark Matter

• Spin precession experiments

EDM coupling of the axion

Spin coupling of the axion axion wind

The Piezoaxionic Effect

Dark Photon Dark Matter

Shielding

Moduli Dark Matter

Causes variation of fundamental constants

• Makes the energy splitting of atoms and nuclei oscillate in time

• Atomic clocks and atom interferometry searches

• Makes the size of atoms change in time

• Resonant mass detectors and oscillator searches

Signatures summary

All:

Theory evaluation summary

	Grade
QCD axion	A(+): well-defined range, solves the CP problem, excellent DM candidate
Axions	A-: easy to make light in string theory, finite number of couplings, excellent DM candidate
Dark Photons	B(+): can be lightish, but there may be issues with DM production
Moduli, Dilaton, Radion	B(<u>+</u>): well-defined DM production mechanism, but there is a (perhaps justified) tuning