Ultralight Scalars and Vectors

Dark Interactions 2024, Vancouver

Akshay Ghalsasi

Ultralight Scalars and Vectors

Dark Interactions 2024, Vancouver

Akshay Ghalsasi

What is ULDM

- Local DM density is known $\sim 0.4 \text{ GeV cm}^{-3}$
- The de Broglie wavelength of a particle is given by $\lambda_{db} =$

 $\left(\frac{30 \text{eV}}{1000 \text{eV}}\right)$ For local DM density we get $N \simeq$ within one dB wavelength m ,

 2π mv

What is ULDM

- In this limit we can approximate DM as classical wave
- Presence of ULDM can be modeled by solving the classical EOM

- Production of boson DM can typically be modeled by classical EOM for $m\gg 30 {\rm eV}$

ULDM Snowmass Whitepaper

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Snowmass 2021 White Paper New Horizons: Scalar and Vector Ultralight Dark Matter

D. Antypas,^{1,2} A. Banerjee,³ C. Bartram,⁴ M. Baryakhtar,⁴ J. Betz,⁵ J. J. Bollinger,⁶ C. Boutan,⁷ D. Bowring,⁸ D. Budker,^{2, 1, 9} D. Carney,¹⁰ G. Carosi,^{11, 4} S. Chaudhuri,¹² S. Cheong,^{13, 14} A. Chou,⁸ M. D. Chowdhury,¹⁵ R. T. Co,¹⁶ J. R. Crespo López-Urrutia,¹⁷ M. Demarteau,¹⁸ N. DePorzio,¹⁹ A. V. Derbin,²⁰ T. Deshpande,²¹ M. D. Chowdhury,¹⁵ L. Di Luzio,^{22,23} A. Diaz-Morcillo,²⁴ J. M. Doyle,^{19, 25} A. Drlica-Wagner,^{8, 26, 27} A. Droster,⁹ N. Du,¹¹ B. Döbrich,²⁸ J. Eby,²⁹ R. Essig,³⁰ G. S. Farren,³¹ N. L. Figueroa,^{1,2} J. T. Fry,³² S. Gardner,³³ A. A. Geraci,²¹ A. Ghalsasi,³⁴ S. Ghosh,^{35,36} M. Giannotti,³⁷ B. Gimeno,³⁸ S. M. Griffin,^{39,40} D. Grin,⁴¹ D. Grin,⁴¹ H. Grote,⁴² J. H. Gundlach,⁴ M. Guzzetti,⁴ D. Hanneke,⁴³ R. Harnik,⁸ R. Henning,^{44,45} V. Irsic,^{46,47} H. Jackson,⁹ D. F. Jackson Kimball,⁴⁸ J. Jaeckel,⁴⁹ M. Kagan,¹³ D. Kedar,^{50,51} R. Khatiwada,^{8, 52} S. Knirck,⁸ S. Kolkowitz,⁵³ T. Kovachy,²¹ S. E. Kuenstner,¹⁴ Z. Lasner,^{19, 25} A. F. Leder,^{9,10} R. Lehnert,⁵⁴ D. R. Leibrandt,^{6,51} E. Lentz,⁷ S. M. Lewis,⁸ Z. Liu,⁵⁵ J. Manley,⁵⁶ R. H. Maruyama,³⁵ A. J. Millar,^{57, 58} V. N. Muratova,²⁰ N. Musoke,⁵⁹ S. Nagaitsev,^{8, 27} O. Noroozian,⁶⁰ C. A. J. O'Hare,⁶¹ J. L. Ouellet,³² K. M. W. Pappas,³² E. Peik,⁶² G. Perez,³ A. Phipps,⁴⁸ N. M. Rapidis,¹⁴ J. M. Robinson,^{50, 51} V. H. Robles,⁶³ K. K. Rogers,⁶⁴ J. Rudolph,¹⁴ G. Rybka,⁴ M. Safdari,^{13,14} M. Safdari,^{14,13} M. S. Safronova,⁵ C. P. Salemi,³² P. O. Schmidt,^{62,65} T. Schumm,⁶⁶ A. Schwartzman,¹³ J. Shu,⁶⁷ M. Simanovskaia,¹⁴ J. Singh,¹⁴ S. Singh,^{56,5} M. S. Smith,¹⁸ W. M. Snow,⁵⁴ Y. V. Stadnik.⁶ C. Sun,⁶⁸ A. O. Sushkov,⁶⁹ T. M. P. Tait,⁷⁰ V. Takhistov,²⁹ D. B. Tanner,⁷¹ D. J. Temples,⁸ P. G. Thirolf,⁷² J. H. Thomas,⁵² M. E. Tobar,⁷³ O. Tretiak,^{1,2} Y.-D. Tsai,^{70,8} J. A. Tyson,⁷⁴ M. Vandegar,¹³ S. Vermeulen,⁴² L. Visinelli,^{75,76} E. Vitagliano,⁷⁷ Z. Wang,⁷⁸ D. J. Wilson,¹⁵ L. Winslow,³² S. Withington,⁴⁷ M. Wooten,⁹ J. Yang,⁷ J. Ye,^{50, 51} B. A. Young,⁷⁹ F. Yu,⁸⁰ M. H. Zaheer,⁵ T. Zelevinsky,⁸¹ Y. Zhao,⁸² and K. Zhou¹³

Standard Misalignment

 $\ddot{\phi} + 3H\dot{\phi} +$ $H \gg m_{\phi}$ $V(\phi)$

$$m_{\phi}^2 \phi = 0$$

Standard Misalignment

Standard Misalignment

ULDM "Nightmare Scenario" What if ULDM interacts only gravitationally? • Lyman α constraints the matter power spectrum $k \simeq 1 - 10 \text{ Mpc}^{-1}$

- MW Satellite counts also constraint the linear matter power spectrum

ULDM "Nightmare Scenario" What if ULDM interacts only gravitationally? Arvanitaki et. al. • A massive boson $m_{\phi}^{-1} \simeq R_{\rm sch}$ can extract angular momentum from BH

ULDM-SM Interactions ULDM can interacts with standard model particles

- Coupling to photons
- $\frac{1}{4\sqrt{2}}\frac{d_e}{M_{\rm pl}}\phi F^{\mu\nu}F$
- Coupling to fermions (leptons or quarks)

 $\frac{d_{m_f}}{\sqrt{2}M_{\rm pl}}\phi m_f \bar{f}f$

Coupling to Higgs

 $A\phi H^2$;

$$F_{\mu\nu}; \ \alpha \to \alpha(1 + \frac{d_e}{\sqrt{2}M_{\rm pl}}\phi)$$

;
$$m_f \to m_f \left(1 + \frac{d_{m_f} \phi}{\sqrt{2}M_{\text{pl}}} \right)$$

$$v \rightarrow v \left(1 + \frac{A\phi}{m_H^2} \right)$$

ULDM SM Interactions Astrophysical Constraints

Dark Matter Candidates

ULDM SM Interactions Experimental constraints

Dark Matter Candidates

Experimental Constraints Long Range Forces

$$V(r) = -\frac{Gm_A m_B}{r} \left(1 + \alpha_A \alpha_B e^{-m_\phi r}\right) ; \alpha_A \propto \frac{1}{m_A} \frac{\partial m_A}{\partial \phi}$$

- Equivalence principle (acceleration due to gravity is independent of mass)
- EP tests dominate for for $m_{\phi} \lesssim 10^{-6} \text{ eV}$
- For $m_{\phi} \gtrsim 10^{-6} \text{ eV}$ Inverse Square Law tests dominate

Experimental Constraints Atomic/Nuclear Clocks Arvanitaki, Huang, Tilburg $\phi(t) \simeq 10^9 \text{GeV}\left(\frac{10^{-20} \text{eV}}{m_{\phi}}\right) \cos(n)$

- Atomic clocks are tuned to specific transitions of atoms
- Compare two frequencies that have different dependences on α

$$\frac{d}{dt} \left(\frac{\nu_2}{\nu_1} \right) = \left(K_2 - K_1 \right) \frac{1}{\alpha} \frac{d\alpha}{dt}$$

$$(m_{\phi}t) \rightarrow \frac{\delta\alpha}{\alpha} \simeq 10^{-9} d_e \left(\frac{10^{-20} \text{eV}}{m_{\phi}}\right)$$

All Constraints

Effects in early universe cosmology

$$\mathcal{L} \supset -\left[m_f\left(1 - \frac{\beta\phi}{M_{\rm pl}}\right)\bar{\mu}\mu + \mathrm{h.c.}\right]$$

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$$

 $+\frac{1}{2}m_{\phi}^{2}\phi^{2}$

 $\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^{2}\phi + \frac{\partial V_{T}(m_{\mu}(\phi))}{\partial \phi}$ $T = 10 m_{\psi}$

 $V(\phi)$

Low temperature

 $T = 0.1 \, m_{\psi}$

$$\begin{aligned} (\phi) &= \frac{1}{2} m_{\phi}^2 \phi^2 \\ (\phi) &= -\frac{g_{\psi}}{2\pi^2} T^4 \int_0^\infty dx \, x^2 \, \log \left[1 + \exp\left(-\sqrt{x^2 + \frac{m_{\psi}(\phi)^2}{T^2}}\right) \right] \\ &\sim e^{-m_{\psi}/T} \quad \text{for} \quad T \ll m_{\psi} \end{aligned}$$

- Tree level dominates at low temperature
- Finite temperature contribution suppressed

- Tree Level Potential
- Finite Temperature Potential

Intermediate temperature

 $T = m_{\psi}$

$$\begin{split} &(\phi) = \frac{1}{2} m_{\phi}^2 \phi^2 \\ &(\phi) = -\frac{g_{\psi}}{2\pi^2} T^4 \int_0^\infty dx \, x^2 \, \log\left[1 + \exp\left(-\sqrt{x^2 + \frac{m_{\psi}(\phi)^2}{T^2}}\right) \right] \end{split}$$

Finite temperature contribution grows at intermediate temperatures

- Tree Level Potential
- Finite Temperature Potential

Finite temperature piece dominates at high temperatures Potential minimum located at large scalar field values

- Tree Level Potential
- Finite Temperature Potential

Finite temperature piece dominates at high temperatures Potential minimum located at large scalar field values

- Tree Level Potential
- Finite Temperature Potential

- after inflation
- In the case of a Standard Model fermion, initial condition set after electroweak phase transition

Slide by BB

• Assume nonzero homogeneous scalar field with arbitrary* initial condition

 \mathcal{O}

Random initial ϕ field value

- Inflation ends and reheating occurs, creating the thermal plasma.
- The finite temperature potential dominates at this stage.
- ϕ rolls toward the minimum at large field values, generating misalignment

<u>High temperature</u>

- Inflation ends and reheating occurs, creating the thermal plasma.
- The finite temperature potential dominates at this stage.
- ϕ rolls toward the minimum at large field values, generating misalignment

<u>High temperature</u>

- Inflation ends and reheating occurs, creating the thermal plasma.
- The finite temperature potential dominates at this stage.
- ϕ rolls toward the minimum at large field values, generating misalignment

<u>High temperature</u>

- becomes smaller.
- The minimum moves toward the origin

Intermediate temperature

Slide by BB

• At intermediate temperatures of order the fermion mass, the finite temperature pieces

 $T \sim m_f$

- becomes smaller.
- The minimum moves toward the origin

Slide by BB

• At intermediate temperatures of order the fermion mass, the finite temperature pieces

 $T \sim m_f$

- At low temperatures the tree level potential dominates
- The minimum is located at the origin
- Eventually ϕ oscillates and behaves as dark matter

- At low temperatures the tree level potential dominates
- The minimum is located at the origin
- Eventually ϕ oscillates and behaves as dark matter

- At low temperatures the tree level potential dominates
- The minimum is located at the origin
- Eventually ϕ oscillates and behaves as dark matter

Thermal misalignment mechanism

Thermal Misalignment

• At high temperatures, ϕ is dynamically misaligned from a small initial value to its oscillation amplitude

• ϕ oscillation amplitude and abundance dictated by initial conditions

Thermal misalignment mechanism

- At high temperatures, ϕ is dynamically misaligned from a small initial value to its oscillation amplitude
- The oscillation amplitude is an attractor for $\phi_i \ll \phi_{\rm osc}$ - insensitive to initial conditions

• ϕ oscillation amplitude and abundance dictated by initial conditions

Thermal misalignment mechanism

Thermal Misalignment

- At high temperatures, ϕ is dynamically misaligned from a small initial value to its oscillation amplitude
- The oscillation amplitude is an attractor for $\phi_i \ll \phi_{\rm osc}$ - insensitive to initial conditions
- The oscillation amplitude and resulting abundance is dictated by microscopic particle physics

• ϕ oscillation amplitude and abundance dictated by initial conditions

Constraints from Thermal Misalignment

Batell, AG

 m_{ϕ} [eV]

Thermal Misalignment of Higgs portal scalar $V \supset -\mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + A \phi H^{\dagger} H + \frac{1}{2} m_{\phi}^2 \phi^2$ Batell, AG, Rai

Summary

- Ultralight bosons can be DM.
- Purely gravitational interactions constraint $m_{\phi}\gtrsim 10^{-20}{\rm eV}$ (and intermediate masses from superradiance)
- Couplings with SM mediate long range forces which can be detected
- Large number of Ultralight bosons can modify fundamental constants/ masses
- Increasingly precise ways to measure time/distance has allowed us to put strong constraints on ULDM-SM coupling
- Presence of large amount of SM particles in the early universe modifies the ULDM scalar potential, modifying ULDM dynamics, sourcing misalignment