Akshay Ghalsasi

Ultralight Scalars and Vectors

Dark Interactions 2024, Vancouver

Akshay Ghalsasi

Ultralight Scalars and Vectors

Dark Interactions 2024, Vancouver

What is ULDM

• For local DM density we get $N \simeq \left(\frac{1}{m}\right)^2$ within one dB wavelength 30eV *m*) 3

-
-

What is ULDM

- In this limit we can approximate DM as classical wave
- Presence of ULDM can be modeled by solving the classical EOM

• Production of boson DM can typically be modeled by classical EOM for *m* \gg 30eV

ULDM Snowmass Whitepaper

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Snowmass 2021 White Paper New Horizons: Scalar and Vector Ultralight Dark Matter

D. Antypas,^{1,2} A. Banerjee,³ C. Bartram,⁴ M. Baryakhtar,⁴ J. Betz,⁵ J. J. Bollinger,⁶ C. Boutan,⁷ D. Bowring, ⁸ D. Budker, ^{2, 1, 9} D. Carney, ¹⁰ G. Carosi, ^{11, 4} S. Chaudhuri, ¹² S. Cheong, ^{13, 14} A. Chou, ⁸ M. D. Chowdhury,¹⁵ R. T. Co,¹⁶ J. R. Crespo López-Urrutia,¹⁷ M. Demarteau,¹⁸ N. DePorzio,¹⁹ A. V. Derbin, ²⁰ T. Deshpande, ²¹ M. D. Chowdhury, ¹⁵ L. Di Luzio, ^{22, 23} A. Diaz-Morcillo, ²⁴ J. M. Doyle, ^{19, 25} A. Drlica-Wagner, ^{8, 26, 27} A. Droster, ⁹ N. Du, ¹¹ B. Döbrich, ²⁸ J. Eby, ²⁹ R. Essig, ³⁰ G. S. Farren, ³¹ N. L. Figueroa, ^{1, 2} J. T. Fry, ³² S. Gardner, ³³ A. A. Geraci, ²¹ A. Ghalsasi, ³⁴ S. Ghosh, $35,36$ M. Giannotti, 37 B. Gimeno, 38 S. M. Griffin, $39,40$ D. Grin, 41 D. Grin, 41 H. Grote,⁴² J. H. Gundlach,⁴ M. Guzzetti,⁴ D. Hanneke,⁴³ R. Harnik,⁸ R. Henning,^{44,45} V. Irsic, ^{46, 47} H. Jackson, ⁹ D. F. Jackson Kimball, ⁴⁸ J. Jaeckel, ⁴⁹ M. Kagan, ¹³ D. Kedar, ^{50, 51} R. Khatiwada, ^{8, 52} S. Knirck, ⁸ S. Kolkowitz, ⁵³ T. Kovachy, ²¹ S. E. Kuenstner, ¹⁴ Z. Lasner, ^{19, 25} A. F. Leder, ^{9, 10} R. Lehnert, ⁵⁴ D. R. Leibrandt, ^{6, 51} E. Lentz, ⁷ S. M. Lewis, ⁸ Z. Liu, ⁵⁵ J. Manley, ⁵⁶ R. H. Maruyama, ³⁵ A. J. Millar, ^{57, 58} V. N. Muratova, ²⁰ N. Musoke, ⁵⁹ S. Nagaitsev, ^{8, 27} O. Noroozian, ⁶⁰ C. A. J. O'Hare, ⁶¹ J. L. Ouellet, ³² K. M. W. Pappas, ³² E. Peik, ⁶² G. Perez, ³ A. Phipps, ⁴⁸ N. M. Rapidis, ¹⁴ J. M. Robinson, ^{50, 51} V. H. Robles, ⁶³ K. K. Rogers, ⁶⁴ J. Rudolph, ¹⁴ G. Rybka,⁴ M. Safdari,^{13,14} M. Safdari,^{14,13} M. S. Safronova,⁵ C. P. Salemi,³² P. O. Schmidt,^{62,65} T. Schumm, ⁶⁶ A. Schwartzman, ¹³ J. Shu, ⁶⁷ M. Simanovskaia, ¹⁴ J. Singh, ¹⁴ S. Singh, ^{56, 5} M. S. Smith, ¹⁸ W. M. Snow, ⁵⁴ Y. V. Stadnik, ⁶ C. Sun, ⁶⁸ A. O. Sushkov, ⁶⁹ T. M. P. Tait, ⁷⁰ V. Takhistov,²⁹ D. B. Tanner,⁷¹ D. J. Temples,⁸ P. G. Thirolf,⁷² J. H. Thomas,⁵² M. E. Tobar,⁷³ O. Tretiak, ^{1, 2} Y.-D. Tsai, ^{70, 8} J. A. Tyson, ⁷⁴ M. Vandegar, ¹³ S. Vermeulen, ⁴² L. Visinelli, ^{75, 76} E. Vitagliano,⁷⁷ Z. Wang,⁷⁸ D. J. Wilson,¹⁵ L. Winslow,³² S. Withington,⁴⁷ M. Wooten,⁹ J. Yang,⁷ J. Ye,^{50,51} B. A. Young,⁷⁹ F. Yu,⁸⁰ M. H. Zaheer,⁵ T. Zelevinsky,⁸¹ Y. Zhao,⁸² and K. Zhou¹³

Standard Misalignment

 $\ddot{\phi} + 3H\dot{\phi} +$ $H \gg m_{\phi}$ $V(\phi)$

$$
\cdot\,m_\phi^2\phi=0
$$

Standard Misalignment

Standard Misalignment

ULDM "Nightmare Scenario" What if ULDM interacts only gravitationally? • Lyman α constraints the matter power spectrum $k\simeq 1-10\,\,{\rm Mpc^{-1}}$

-
- MW Satellite counts also constraint the linear matter power spectrum

ULDM "Nightmare Scenario" What if ULDM interacts only gravitationally? • A massive boson $m_{\phi}^{-1} \simeq R_{\rm sch}$ can extract angular momentum from BH **Arvanitaki et. al.**

ULDM-SM Interactions ULDM can interacts with standard model particles

- Coupling to photons
- 1 $4\sqrt{2}$ *de* $M_{\rm pl}$ *ϕFμν*
- Coupling to fermions (leptons or quarks)

$$
F_{\mu\nu} \; ; \; \alpha \to \alpha(1 + \frac{d_e}{\sqrt{2}M_{\rm pl}}\phi)
$$

$$
\frac{d_{m_f}}{\sqrt{2}M_{\text{pl}}}\phi m_f \bar{f}f; \ m_f \to m_f \left(1 + \frac{d_{m_f}\phi}{\sqrt{2}M_{\text{pl}}}\right)
$$

• Coupling to Higgs

 $A\phi H^2$;

$$
v \rightarrow v \left(1 + \frac{A\phi}{m_H^2} \right)
$$

ULDM SM Interactions Astrophysical Constraints

Dark Matter Candidates

ULDM SM Interactions Experimental constraints

Dark Matter Candidates

Experimental Constraints Long Range Forces

- Equivalence principle (acceleration due to gravity is independent of mass)
- EP tests dominate for for *m^ϕ* ≲ 10−⁶ eV
- For Inverse Square Law tests dominate *m^ϕ* ≳ 10−⁶ eV

$$
V(r) = -\frac{Gm_A m_B}{r} \left(1 + \alpha_A \alpha_B e^{-m_\phi r}\right) ; \alpha_A \propto \frac{1}{m_A} \frac{\partial m_A}{\partial \phi}
$$

- Atomic clocks are tuned to specific transitions of atoms
- Compare two frequencies that have different dependences on *α*

Experimental Constraints Atomic/Nuclear Clocks $\phi(t) \simeq 10^9$ GeV (10^{-20} eV **Arvanitaki, Huang, Tilburg**

$$
\frac{-20_{eV}}{m_{\phi}}\left(\frac{\text{avannian, ruang, mbag}}{\alpha}\right) \simeq \frac{\delta \alpha}{\alpha} \simeq 10^{-9} d_{e} \left(\frac{10^{-20} eV}{m_{\phi}}\right)
$$

$$
\frac{d}{dt}\left(\frac{\nu_2}{\nu_1}\right) = \left(K_2 - K_1\right)\frac{1}{\alpha}\frac{d\alpha}{dt}
$$

All Constraints

Effects in early universe cosmology

1 2 $m_\phi^2 \phi^2$

·· *ϕ* + 3*H* .
h $\dot{\phi} + m_{\phi}^2 \phi +$ $\partial V_T(m_\mu(\phi))$ ∂*ϕ*

 $V(\phi)$

$$
\mathcal{L} \supset -\left[m_f \left(1 - \frac{\beta \phi}{M_{\text{pl}}}\right) \bar{\mu} \mu + \text{h.c.}\right] +
$$

$$
\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2 \phi = 0
$$

Low temperature

 $T=0.1\,m_\psi$

$$
\begin{aligned} (\phi) &= \frac{1}{2} m_{\phi}^2 \phi^2 \\ (\phi) &= -\frac{g_{\psi}}{2\pi^2} T^4 \int_0^{\infty} dx \, x^2 \, \log \left[1 + \exp\left(-\sqrt{x^2 + \frac{m_{\psi}(\phi)^2}{T^2}} \right) \right] \\ &\sim e^{-m_{\psi}/T} \qquad \text{for} \qquad T \ll m_{\psi} \qquad \qquad \text{Boltzmann} \\ \text{suppressed} \end{aligned}
$$

- Tree level dominates at low temperature
- Finite temperature contribution suppressed

- \qquad Tree Level Potential
- Finite Temperature Potential

Intermediate temperature

 $T=m_\psi$

• Finite temperature contribution grows at intermediate temperatures

- $\hspace{1.1mm}-$ Tree Level Potential
- Finite Temperature Potential

$$
\begin{aligned} \dot{\phi}(\phi) &= \frac{1}{2} m_{\phi}^2 \phi^2 \\ \dot{\phi}(\phi) &= -\frac{g_{\psi}}{2\pi^2} T^4 \int_0^\infty dx \, x^2 \, \log \left[1 + \exp\left(-\sqrt{x^2 + \frac{m_{\psi}(\phi)^2}{T^2}} \right) \right] \end{aligned}
$$

High temperature

Finite temperature piece dominates at high temperatures Potential minimum located at large scalar field values

- Tree Level Potential
- Finite Temperature Potential

Finite temperature piece dominates at high temperatures Potential minimum located at large scalar field values

- $\hspace{1.5cm}$ Tree Level Potential
- Finite Temperature Potential

Random initial *ϕ* field value

• Assume nonzero homogeneous scalar field with arbitrary* initial condition

 \mathcal{D}

- after inflation
- In the case of a Standard Model fermion, initial condition set after electroweak phase transition

Cartoon sketch of the mechanism

- Inflation ends and reheating occurs, creating the thermal plasma.
- The finite temperature potential dominates at this stage.
- *ϕ* rolls toward the minimum at large field values, generating misalignment

High temperature

- Inflation ends and reheating occurs, creating the thermal plasma.
- The finite temperature potential dominates at this stage.
- *ϕ* rolls toward the minimum at large field values, generating misalignment

High temperature

- Inflation ends and reheating occurs, creating the thermal plasma.
- The finite temperature potential dominates at this stage.
- *ϕ* rolls toward the minimum at large field values, generating misalignment

High temperature

• At intermediate temperatures of order the fermion mass, the finite temperature pieces

 $T \sim m_f$

- becomes smaller.
- The minimum moves toward the origin

Intermediate temperature

Cartoon sketch of the mechanism

• At intermediate temperatures of order the fermion mass, the finite temperature pieces

 $T \sim m_f$

- becomes smaller.
- The minimum moves toward the origin

Cartoon sketch of the mechanism **Slide by BB**

- At low temperatures the tree level potential dominates
- The minimum is located at the origin
- Eventually *ϕ* oscillates and behaves as dark matter

- At low temperatures the tree level potential dominates
- The minimum is located at the origin
- Eventually *ϕ* oscillates and behaves as dark matter

- At low temperatures the tree level potential dominates
- The minimum is located at the origin
- Eventually *ϕ* oscillates and behaves as dark matter

• At high temperatures, ϕ is dynamically misaligned from a small initial value to its oscillation amplitude

 ϕ is dynamically
 ϕ is dynamically
 ϕ oscillation amplitude and abundance dictated by initial conditions

Thermal misalignment mechanism Slide by BB

• ϕ oscillation amplitude and abundance dictated by initial conditions

- At high temperatures, ϕ is dynamically misaligned from a small initial value to its oscillation amplitude
- The oscillation amplitude is an attractor for $\phi_i \ll \phi_{osc}$ - insensitive to initial conditions

Thermal misalignment mechanism

- At high temperatures, ϕ is dynamically misaligned from a small initial value to its oscillation amplitude
- The oscillation amplitude is an attractor for $\phi_i \ll \phi_{\rm osc}$ - insensitive to initial conditions
- The oscillation amplitude and resulting abundance is dictated by microscopic particle physics

Thermal misalignment mechanism

Thermal Misalignment

• ϕ oscillation amplitude and abundance dictated by initial conditions

Constraints from Thermal Misalignment

Batell, AG

 m_{ϕ} [eV]

Thermal Misalignment of Higgs portal scalar $V \supset -\mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)$ 2 $+A\phi H^{\dagger}H +$ 1 2 $m_\phi^2 \phi^2$ **Batell, AG, Rai**

Summary

- Ultralight bosons can be DM.
- Purely gravitational interactions constraint $m_{\phi} \gtrsim 10^{-20} \text{eV}$ (and intermediate masses from superradiance)
- Couplings with SM mediate long range forces which can be detected
- Large number of Ultralight bosons can modify fundamental constants/ masses
- Increasingly precise ways to measure time/distance has allowed us to put strong constraints on ULDM-SM coupling
- Presence of large amount of SM particles in the early universe modifies the ULDM scalar potential, modifying ULDM dynamics, sourcing misalignment