Dark matter and neutrino physics with cosmology

Vera Gluscevic

University of Southern California

mass, interactions, production = ?

Cosmological consequences?

How does microphysics matter?

Warm DM can free stream out...

Interacting DM can overcool baryons...

Annihilating DM can alter the expansion history...

Fuzzy DM can have galactic-size de Broglie wavelength...

distribution of matter in the universe

Observables:

- CMB primary/sec.
- Galaxy clustering
- Cosmic Shear
- Ly-alpha forest
- MW substructure
- Stellar streams
- Strong lensing

DM-proton (spin-independent) elastic scattering

Leads to an exchange of momentum and heat between DM and gas.

Nadler, Gluscevic, Boddy, Wechsler 2019 (2008.00022); See also: Dvorkin+ 2013, Boehm+ 2009, ++

No missing satellites anymore.

~60 Milky Way satellite galaxies detected in surveys (SDSS, DES, PanSTARRs) down to halo masses of ~few 10⁸ solar masses

Cold dark matter

New dark matter physics

Elastic scattering of DM with protons v-independent scattering

*Including: completeness correction, uncertainties related to the galaxy-halo connection (incl. disruption of subhalos by the Milky Way disk) and mock observations (luminosity, size, and radial distribution).

Nadler, Gluscevic + 2019 (2008.00022); DES collaboration, + 2020

Effective interactions of DM with protons

Maamari, VG,+ (2021), arXiv:2010.02936

Scattering of DM with radiation

Photons

Neutrinos

Wendy Crumrine

There are assumptions...

- Initial conditions are identical to WDM
- No effects at late times (during growth).

Does not apply to every DM scenario

Late-time effects:

SIDM/ETHOS, freeze-in, ++

Both:

Sterile neutrino + neutrino self-interactions

Plot by R. An

The bottleneck:

Forward-modeling small-scale universe in novel DM scenarios.

COZMIC: Cosmological Zoom-in Simulations with Initial Conditions Beyond CDM

Ethan Nadler (USC/Carnegie)

Rui An (USC)

Daneng Yang (UCR)

(Carnegie)

Haibo Yu (UCR)

COZMIC I: Cosmological Zoom-in Simulations with Initial Conditions Beyond CDM

~100 new cosmological dark matter-only zoom-ins with ICs appropriate for IDM, FDM, and WDM.

Nadler, An, Gluscevic, Benson, Du (2410.03635).

Nadler, An, Gluscevic, Benson, Du (2410.03635).

$$\sigma_{MT} = \sigma_0 v^{r}$$

COZMIC II: Fractional dark matter

PRELIMINARY

An, Nadler, Gluscevic, + (in prep).

COZMIC III: Warm SIDM

PRELIMINARY

COZMIC: enabling new bounds

Interacting neutrinos?

Standard neutrino cosmology

- ✓ Decoupled at ~1 MeV
- ✓ Free-streaming radiation
- ✓ Clustering after z~ x00

Bassett & Hlozek 2009 Eisenstein et al. 2007

Interacting neutrino cosmology

neutrino self-interaction rate

$$\Gamma_{\nu} \propto G_{\rm eff}^2 T_{\nu}^5$$

$$\mathcal{L}_{ ext{int}} = g_{ij} ar{
u}_i
u_j arphi_j$$

Cyr-Racine+Sigurdson 2013; Lancaster+ 2018; Park+ 2019; Kreisch+ 2019, etc.

Interacting neutrinos and LSS (using EFT of LSS)

NOTE 1: cosmology probes free streaming, rather than the specifics of the coupling.

NOTE 2: assumed flavor-universal interaction.

Adam He

He, An, Ivanov, Gluscevic (2023) See also Kreisch+ 2020; Also Ivanov 2024, Bird+ 2024.

Data set	$\Delta \chi^2 \text{ wrt } \Lambda \text{CDM} + \sum m_{ u}$
$Planck$ low- ℓ TT	-0.13
$\textit{Planck low-}\ell ~\text{EE}$	+0.99
$Planck$ high- ℓ	+0.15
Planck lensing	-0.14
BOSS	-1.12
$\operatorname{Lyman}_{-\!$	-22.18
DES	-1.87
Total	-24.3

PRELIMINARY

Rederived eBOSS likelihood (based on new Lya simulations) does not prefer a delay in free streaming.

Re-analysis of the reduced Lyman-alpha likelihood (updated sims + conservative data cuts)

UPDATE: Interacting neutrinos and LSS

He, Bird, Gluscevic (in prep).

PRELIMINARY

No help for Hubble tension...

Interacting neutrinos with DESI

PRELIMINARY

Adam He

He, Gluscevic, in prep.

Neutrinos meet dark matter

Dodelson & Widrow

DM = Fourth, heavy (~keV) neutrino that doesn't talk to the SM, but mixes with active neutrinos.

$$\nu_4 = \cos\theta\,\nu_s + \sin\theta\,\nu_a$$

$$\begin{array}{l} n \leftrightarrow p + e^- + v_e \\ p + e^- \leftrightarrow v_e + n \\ p + v_e \leftrightarrow e^+ + n \end{array}$$

Dessert, Rodd, Safdi (2020)

...ruled out, due to decay and X-ray production.

Sterile neutrinos + neutrino self-interactions

4 free params: m₄, m_{ϕ}, θ , λ_{ϕ}

de Gouvea + (2019), etc.

Power suppression from sterile neutrino free streaming:

Rui An

=> a cosmology were DM free streams out of grav. potentials.

Combined bounds on sterile neutrino dark matter

Rui An

An, Gluscevic, Nadler, Zhang (2023)

Mediators > 1GeV are ruled out.

Rui An

An, Gluscevic, Nadler, Zhang (2023)

The future

Huge discovery space is becoming available this decade

Summary

- Cosmology (near and far field) probes complementary parameter space to lab experiments, in both DM and neutrino physics.
- Matter distribution on subgalactic scales is a promising newphysics testbed, given the landscape of data in the coming decade.
- Current key limitation is forward-modeling. **COZMIC** zoom-ins are a step forward.
- Neutrino self-interaction "strong mode" is disfavored by re-derived Lyman-alpha likelihood, and by DESI.
- Joint information from the near-field measurements + lab tests of neutrino physics put pressure on a broad range sterile neutrino production mechanisms.

Sterile neutrino production and bounds

Combinations of neutrino self-interaction strength λ_{ϕ} and mediator mass m_{ϕ} that produce sterile-neutrino DM at the correct relic abundance, for a DM mass of m_4 = 40.3 keV and vacuum mixing angle of sin²2 θ = 8.6 × 10⁻¹³.

light green shaded regions show experimental flavor-dependent constraints (Berryman et al. 2018; Berryman et al. 2022; Esteban et al. 2021).