QCD Axion-mediated Dark Matter arXiv:2306.03145 (JHEP 2023)

Collaborators : Jeff Dror² Stefania Gori¹

Speaker : Pankaj Munbodh¹

¹Department of Physics University of California Santa Cruz

> ²Department of Physics University of Florida

October 18, 2024

 Ω

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G\tilde G$ is small (or zero) $\bar\theta \lesssim 10^{-10}$ (strong CP problem).

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G\tilde G$ is small (or zero) $\bar\theta \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

KILIKA EIKIEN EI KORA

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G\tilde G$ is small (or zero) $\bar\theta \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

Below QCD confinement scale Λ_{QCD} , instantons generate a potential for a , which now acquires a small mass $m_a\approx \frac{\Lambda_{\rm QCD}^2}{f_a}$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ K 9 Q Q

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G\tilde G$ is small (or zero) $\bar\theta \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

Below QCD confinement scale Λ_{QCD} , instantons generate a potential for a , which now acquires a small mass $m_a\approx \frac{\Lambda_{\rm QCD}^2}{f_a}$.

Minimization of the generated potential causes a to get a VEV that cancels the theta term.

K □ ▶ K @ ▶ K ミ X X 3 X 3 는 X 9 Q Q

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G\tilde G$ is small (or zero) $\bar\theta \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

Below QCD confinement scale Λ_{QCD} , instantons generate a potential for a , which now acquires a small mass $m_a\approx \frac{\Lambda_{\rm QCD}^2}{f_a}$.

Minimization of the generated potential causes a to get a VEV that cancels the theta term.

Option 1: Axions can behave as DM, for $f_a \ge 10^{11}$ GeV.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G\tilde G$ is small (or zero) $\bar\theta \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

Below QCD confinement scale Λ_{QCD} , instantons generate a potential for a , which now acquires a small mass $m_a\approx \frac{\Lambda_{\rm QCD}^2}{f_a}$.

Minimization of the generated potential causes a to get a VEV that cancels the theta term.

Option 1: Axions can behave as DM, for $f_a \gtrsim 10^{11}$ GeV.

Option 2: QCD axion can be the mediator between DM and SM for smaller 10^9 GeV $\leq f_a \leq 10^{11}$ GeV. **KORK ERRY ABY OR YOUR**

Minimal Setup

P. Munbodh (UCSC) and [QCD Axion-mediated Dark Matter](#page-0-0) Correction 18, 2024 3/14

K 何 ▶ ス ヨ ▶ ス ヨ ▶

Model

$$
\mathcal{L} \supset \frac{c_\chi}{2 f_a} \partial_\mu a \bar{\chi} \gamma^\mu \gamma^5 \chi + \frac{c_{\psi_i}}{2 f_a} \partial_\mu a \bar{\psi}_i \gamma^\mu \gamma^5 \psi_i + \frac{c_\gamma}{4 f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\alpha_s}{8 \pi} \frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{A \mu\nu}
$$

 $\psi_i = \textsf{SM}$ leptons (e) and up/down-type quarks (u/d) .

 c_Y : axion-DM coupling.

$$
c_{\psi_i}=c_e, c_u, c_d \text{ (axion-matter couplings)}.
$$

 $c_γ$: axion-photon coupling.

 $g_{a\chi} \equiv \frac{c_{\chi} m_{\chi}}{f_a}$ $\frac{dm_{\chi}}{f_a}$, m_{χ} and $f_a \rightarrow$ parameters of the model.

DFSZ : SM matter-axion couplings depend on an angle β . M. Dine et al. (1981), Zhitnitsky (1980)

P. Munbodh (UCSC) [QCD Axion-mediated Dark Matter](#page-0-0) Cotober 18, 2024 4/14

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q ⊙

Model

$$
\mathcal{L} \supset \frac{c_\chi}{2 f_a} \partial_\mu a \bar{\chi} \gamma^\mu \gamma^5 \chi + \frac{c_{\psi_i}}{2 f_a} \partial_\mu a \bar{\psi}_i \gamma^\mu \gamma^5 \psi_i + \frac{c_\gamma}{4 f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\alpha_s}{8 \pi} \frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{A \mu\nu}
$$

 $\psi_i =$ SM leptons (e) and up/down-type quarks (u/d) .

 c_x : axion-DM coupling.

 $c_{\psi_i} = c_e, c_u, c_d \xrightarrow{\alpha_s} c_p, c_n$ (axion-matter couplings).

 c_{γ} : axion-photon coupling.

 $g_{a\chi} \equiv \frac{c_{\chi} m_{\chi}}{f_a}$ $\frac{dm_{\chi}}{f_a}$, m_{χ} and $f_a \rightarrow$ parameters of the model.

DFSZ : SM matter-axion couplings depend on an angle β . M. Dine et al. (1981), Zhitnitsky (1980)

P. Munbodh (UCSC) COD Axion-mediated Dark Matter Coro October 18, 2024 4/14

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q ⊙

Thermalization I

three possible hierarchies: $T_{a\chi} \ll T_{a\text{SM}} \ll T_{\chi\text{SM}}$ (as shown), $T_{aSM} \ll T_{a\gamma} \ll T_{\gamma\text{SM}}$, and $T_{aSM} \ll T_{\gamma\text{SM}} \ll T_{a\gamma}$ depending on the size of $g_{a\chi}$ and f_a .

+ reheat temperature $T_{\text{RH}} \rightarrow$ cosmological history \rightarrow dominant production mechanism.

P. Munbodh (UCSC) COD Axion-mediated Dark Matter Cortober 18, 2024 6/14

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Pedestrian's guide to DM production

T. Lin arXiv 1904.07915

A Bird's Eye view

arXiv:2306.03145 (Dror, Gori and Munbodh)

Thermally decoupled axions I

$$
T_{\text{RH}} < T_{a\text{SM}}
$$
. Freeze-in : $\pi^0 \to \chi \chi$, $gg \to \chi \chi$, $t\bar{t} \to \chi \chi \ldots$

Thermally decoupled axions II

 $T_{\rm RH} < T_{a5M}$

Figure: LEFT : $gg \rightarrow \chi \chi$, RIGHT: $gg \rightarrow \chi \chi$, $tt \rightarrow \chi \chi$

. p э

Thermally coupled axions I

 $T_{\rm RH} > T_{\rm aSM}$

Dark Sector decouples from SM at $T_{aSM} \rightarrow$ Dark radiation \rightarrow change from SM prediction $N_{\text{eff}} = 3.044$.

QCD axion can play a crucial role as the mediator between the DM and SM.

 2990

重

QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\text{RH}} \rightarrow$ production mechanism of dark matter.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\rm RH}\to$ production mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\text{RH}} \rightarrow$ production mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

Future studies of out-of-equilibrium dynamics :

 $A\oplus A\rightarrow A\oplus A\rightarrow A\oplus A\quad \oplus$

QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\rm RH}\to$ production mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

Future studies of out-of-equilibrium dynamics :

• interplay of $\chi \chi \to aa$ with SM $\to \chi \chi$ (blue region on slide 10).

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → K) Q Q @

QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\rm RH}\to$ production mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

Future studies of out-of-equilibrium dynamics :

- interplay of $\chi \chi \to aa$ with SM $\to \chi \chi$ (blue region on slide 10).
- Out-of-equilibrium collisions of the axions $aa \rightarrow \chi \chi$ frozen-in from $SM \rightarrow SM \ a$ (Sequential Freeze-in).

KOD KOD KED KED DAR

Backup Slide I : Experimental Constraints II (SIDM)

P. Munbodh (UCSC) [QCD Axion-mediated Dark Matter](#page-0-0) October 18, 2024 13 / 14

Backup slide II : Thermally coupled axions I

Freeze-out (secluded) $\chi \bar{\chi} \to a a$. Hierarchy : $T_{\rm RH} \geq T_{\rm YSM}$ or $T_{a\chi} \geq T_{\rm RH} \geq T_{a\rm SM}$. For $m_{\rm y} \sim 10$ GeV, $g_{\rm av} \sim 0.1$.

Freeze-in $aa \rightarrow \bar{Y}Y$. Hierarchy : $T_{aSM} \lesssim T_{\rm RH} \lesssim T_{\rm xSM}$ and $T_{\rm RH} \gtrsim T_{a\chi}$ $g_{a\chi}$ can be in its natural regime m_{χ}/f_a for weak-scale m_{χ} .

スター・ステーション ラーラ