QCD Axion-mediated Dark Matter arXiv:2306.03145 (JHEP 2023)

Collaborators : Jeff Dror² Stefania Gori¹

Speaker : Pankaj Munbodh¹

¹Department of Physics University of California Santa Cruz

> ²Department of Physics University of Florida

October 18, 2024

QCD Axion-mediated Dark Matter

1/14

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G \tilde{G}$ is small (or zero) $\bar{\theta} \lesssim 10^{-10}$ (strong CP problem).

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G \tilde{G}$ is small (or zero) $\bar{\theta} \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{\rm PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

P. Munbodh (UCSC)

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G \tilde{G}$ is small (or zero) $\bar{\theta} \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{\rm PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

Below QCD confinement scale Λ_{QCD} , instantons generate a potential for a, which now acquires a small mass $m_a \approx \frac{\Lambda_{\text{QCD}}^2}{f_a}$.

・ロット 4 回 ト 4 日 ト - 日 - うらつ

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{2} G \tilde{G}$ is small (or zero) $\bar{\theta} \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

Below QCD confinement scale Λ_{QCD} , instantons generate a potential for a, which now acquires a small mass $m_a\approx \frac{\Lambda_{\rm QCD}^2}{f_-}.$

Minimization of the generated potential causes a to get a VEV that cancels the theta term.

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G \tilde{G}$ is small (or zero) $\bar{\theta} \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{\rm PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn

Below QCD confinement scale $\Lambda_{\rm QCD}$, instantons generate a potential for a, which now acquires a small mass $m_a \approx \frac{\Lambda_{\rm QCD}^2}{f_a}$.

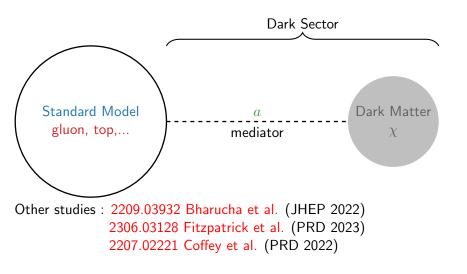
Minimization of the generated potential causes a to get a VEV that cancels the theta term.

Option 1: Axions can behave as DM, for $f_a \gtrsim 10^{11}$ GeV.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Neutron EDM is tightly constrained \rightarrow QCD CP-violating θ term $-\theta \frac{\alpha_s}{8\pi} G \tilde{G}$ is small (or zero) $\bar{\theta} \lesssim 10^{-10}$ (strong CP problem).

Introduce global $U(1)_{\rm PQ}$ symmetry which gets broken at high scale f_a generating axion a as a Goldstone boson. Weinberg, Wilczek, Peccei, Quinn


Below QCD confinement scale $\Lambda_{\rm QCD}$, instantons generate a potential for a, which now acquires a small mass $m_a \approx \frac{\Lambda_{\rm QCD}^2}{f_a}$.

Minimization of the generated potential causes a to get a VEV that cancels the theta term.

Option 1: Axions can behave as DM, for $f_a \gtrsim 10^{11}$ GeV.

Option 2: QCD axion can be the mediator between DM and SM for smaller $10^9 \text{ GeV} \lesssim f_a \lesssim 10^{11} \text{ GeV}.$

Minimal Setup

P. Munbodh (UCSC)

QCD Axion-mediated Dark Matter

Model

$$\mathcal{L} \supset \frac{c_{\chi}}{2f_a} \partial_{\mu} a \bar{\chi} \gamma^{\mu} \gamma^5 \chi + \frac{c_{\psi_i}}{2f_a} \partial_{\mu} a \bar{\psi}_i \gamma^{\mu} \gamma^5 \psi_i + \frac{c_{\gamma}}{4f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{A\mu\nu}$$

 $\psi_i = \mathsf{SM}$ leptons (e) and up/down-type quarks (u/d).

 c_{χ} : axion-DM coupling.

$$c_{\psi_i} = c_e, c_u, c_d$$
 (axion-matter couplings).

 c_{γ} : axion-photon coupling.

 $g_{a\chi} \equiv \frac{c_{\chi}m_{\chi}}{f_a}$, m_{χ} and $f_a \rightarrow$ parameters of the model.

DFSZ : SM matter-axion couplings depend on an angle β . M. Dine et al. (1981), Zhitnitsky (1980)

P. Munbodh (UCSC)

QCD Axion-mediated Dark Matter

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Model

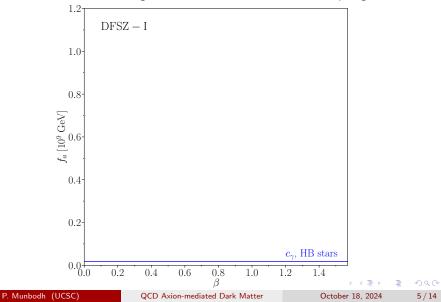
$$\mathcal{L} \supset \frac{c_{\chi}}{2f_a} \partial_{\mu} a \bar{\chi} \gamma^{\mu} \gamma^5 \chi + \frac{c_{\psi_i}}{2f_a} \partial_{\mu} a \bar{\psi}_i \gamma^{\mu} \gamma^5 \psi_i + \frac{c_{\gamma}}{4f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{A\mu\nu}$$

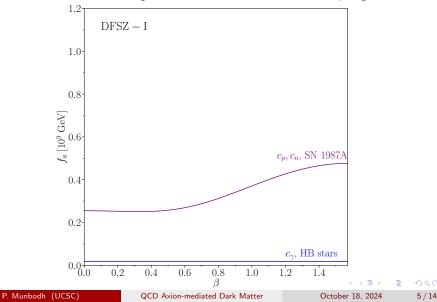
 $\psi_i = \mathsf{SM}$ leptons (e) and up/down-type quarks (u/d).

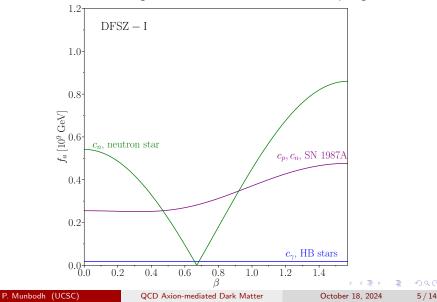
 c_{χ} : axion-DM coupling.

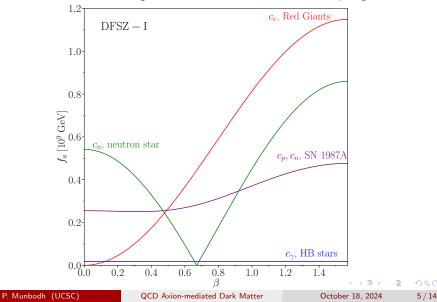
 $c_{\psi_i} = c_e, c_u, c_d \xrightarrow{\alpha_s} c_p, c_n$ (axion-matter couplings).

 c_{γ} : axion-photon coupling.

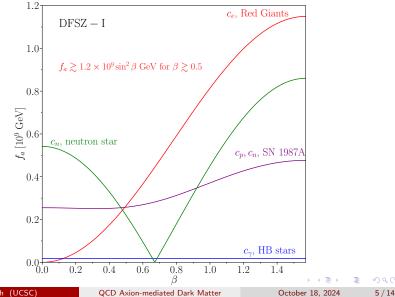

 $g_{a\chi} \equiv \frac{c_{\chi}m_{\chi}}{f_a}$, m_{χ} and $f_a \rightarrow$ parameters of the model.

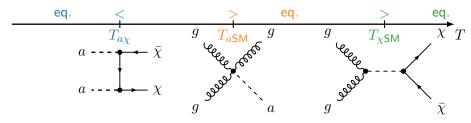

DFSZ : SM matter-axion couplings depend on an angle β . M. Dine et al. (1981), Zhitnitsky (1980)


P. Munbodh (UCSC)


QCD Axion-mediated Dark Matter

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの



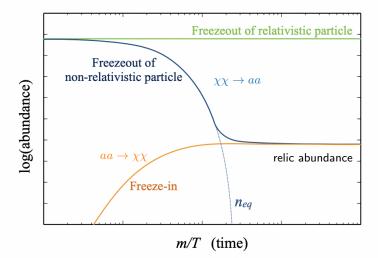


Axions \rightarrow additional cooling of stars \rightarrow constrain axion couplings.

P. Munbodh (UCSC)

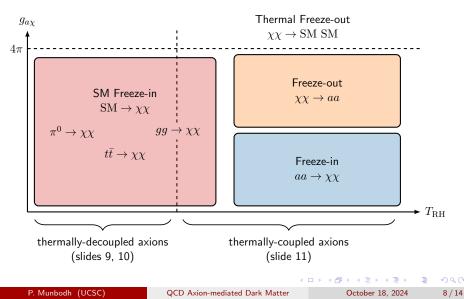
Thermalization I

three possible hierarchies: $T_{a\chi} \ll T_{a\rm SM} \ll T_{\chi\rm SM}$ (as shown), $T_{a\rm SM} \ll T_{a\chi} \ll T_{\chi\rm SM}$, and $T_{a\rm SM} \ll T_{\chi\rm SM} \ll T_{a\chi}$ depending on the size of $g_{a\chi}$ and f_a .

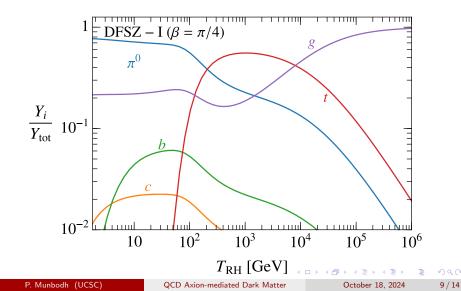

+ reheat temperature $T_{\rm RH} \rightarrow$ cosmological history \rightarrow dominant production mechanism.

P. Munbodh (UCSC)

QCD Axion-mediated Dark Matter


Pedestrian's guide to DM production

T. Lin arXiv 1904.07915


A Bird's Eye view

arXiv:2306.03145 (Dror, Gori and Munbodh)

Thermally decoupled axions I

$$T_{\mathsf{RH}} < T_{a\mathsf{SM}}$$
. Freeze-in : $\pi^0 \to \chi \chi$, $gg \to \chi \chi$, $t\bar{t} \to \chi \chi \dots$

Thermally decoupled axions II

 $T_{\mathsf{RH}} < T_{a\mathsf{SM}}$

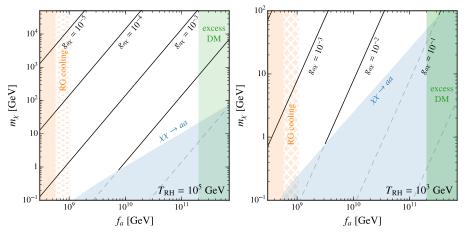
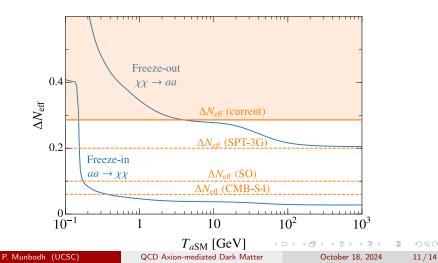



Figure: LEFT : $gg \rightarrow \chi \chi$, RIGHT: $gg \rightarrow \chi \chi$, $tt \rightarrow \chi \chi$

Thermally coupled axions I

 $T_{\rm RH} > T_{a \rm SM}$ Dark Sector decouples from SM at $T_{a \rm SM} \rightarrow$ Dark radiation \rightarrow change from SM prediction $N_{\rm eff} = 3.044$.

 QCD axion can play a crucial role as the mediator between the DM and SM.

イロト イボト イヨト イヨト

э

 QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\rm RH} \rightarrow$ production mechanism of dark matter.

3

 QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\text{RH}} \rightarrow$ production mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

 QCD axion can play a crucial role as the mediator between the DM and SM.

Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\text{RH}} \rightarrow$ production mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

Future studies of out-of-equilibrium dynamics :

 QCD axion can play a crucial role as the mediator between the DM and SM.

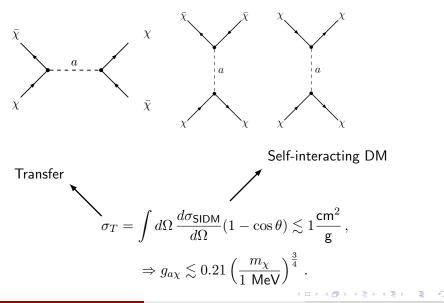
Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\rm RH} \rightarrow$ production mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

Future studies of out-of-equilibrium dynamics :

• interplay of $\chi\chi \rightarrow aa$ with SM $\rightarrow \chi\chi$ (blue region on slide 10).

QCD axion can play a crucial role as the mediator between the DM and SM.


Parameters $g_{a\chi}, f_a, m_{\chi} \rightarrow$ Temperature hierarchy. $T_{\mathsf{RH}} \rightarrow \mathsf{production}$ mechanism of dark matter.

Vast collection of production mechanisms to be understood and probed fully.

Future studies of out-of-equilibrium dynamics :

- interplay of $\chi\chi \rightarrow aa$ with SM $\rightarrow \chi\chi$ (blue region on slide 10).
- Out-of-equilibrium collisions of the axions $aa \rightarrow \chi \chi$ frozen-in from $SM \rightarrow SM a$ (Sequential Freeze-in).

Backup Slide I : Experimental Constraints II (SIDM)

QCD Axion-mediated Dark Matter

Backup slide II : Thermally coupled axions I

 $\begin{array}{l} \mbox{Freeze-out (secluded)} \ \chi \bar{\chi} \rightarrow aa. \\ \hline \mbox{Hierarchy}: \ T_{\rm RH} \gtrsim T_{\chi \rm SM} \ \mbox{or} \ T_{a\chi} \gtrsim T_{\rm RH} \gtrsim T_{a \rm SM}. \\ \hline \mbox{For} \ m_{\chi} \sim 10 \ \mbox{GeV}, \ g_{a\chi} \sim 0.1. \end{array}$

 $\begin{array}{l} \underline{\text{Freeze-in}} \ aa \rightarrow \bar{\chi}\chi.\\ \text{Hierarchy}: \ T_{a\text{SM}} \lesssim T_{\text{RH}} \lesssim T_{\chi\text{SM}} \ \text{and} \ T_{\text{RH}} \gtrsim T_{a\chi}\\ g_{a\chi} \ \text{can be in its natural regime} \ m_{\chi}/f_a \ \text{for weak-scale} \ m_{\chi}. \end{array}$