

PADME Experiment and the search for X17

Andre Frankenthal, Princeton University

On behalf of the PADME Collaboration

Dark Interactions 2024

- Dark matter could belong to a complex dark sector
- Simple extension of the standard model (SM) is the **dark photon** (A'):
 - A' is the gauge boson of a new symmetry, $U(1)_D$, similar to photon in SM
 - Only dark matter is charged under this gauge symmetry
 - Kinetic mixing between dark photon and hyperphoton fields:
 - This additional term in the Lagrangian creates an EM-A' coupling:
 - Mass is allowed via symmetry breaking:

A' production and decay in accelerators

Positron Annihilation into Dark Matter Experiment

- Located in Frascati
- ~ 30-people collaboration

Missing-mass technique in fixed-target expts.

PADME original setup

PADME calorimeters

Electromagnetic calorimeter

- 616 scintillating BGO crystals from old L3 expt. at LEP
- 3 m downstream of target
- BGO scintillation time: ~ 300 ns
- Central square hole (5x5) to evade Bremsstrahlung
- Energy resolution: ~ 2%/Sqrt[E]

Small-angle calorimeter

- 25 Cherenkov PbF₂ crystals
- Immediately downstream of ECAL
- PbF₂ dead time: ~ 3 ns
- Fits behind the ECAL central square hole
- Energy resolution: ~ 6%/Sqrt[E]

PADME data taking and beam background PADME

$e^+e^- \rightarrow \gamma\gamma$ cross-section measurement **Prome**

Precise
$$\sigma(e^+)$$

Precise
$$\sigma(e^+e^- \rightarrow \gamma\gamma)$$
 at low $\sqrt{s} = 21$ MeV **PADME**

 $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma)) = 1.977 \pm 0.018 \text{ (stat)} \pm 0.045 \text{ (syst)} \pm 0.110 \text{ (n. collisions) mb}$

 $\sigma(e^+e^- \rightarrow \gamma\gamma(\gamma)) = 1.9478 \pm 0.0005 \text{ (stat)} \pm 0.0020 \text{ (syst) mb} \text{ (QED@NLO)}$

QED@NLO <u>Balossini et al., PLB</u> <u>663 (2008) 209</u> (Babayaga)

PADME Collaboration, PRD 107 (2023) 12008

ATOMKI anomalies and X17

- Recent results indicate anomalous excesses in ⁴He, ⁸Be, and ¹²C atomic measurements of internal pair creation
- Possible explanation is new protophobic boson with ~ 17 MeV mass (X17)
- Viable parameter space remains within PADME sensitivity window

Feng et al., PRL 117 (2016) 078103

Main backgrounds:

ME

Beam energy scan around resonance **PADME**

 N_{X17}^{Vect}

 $\simeq 1.8 \times 10^{-7} \times \left(\frac{g_{ve}}{2 \times 10^{-4}}\right)^2 \left(\frac{1 MeV}{\sigma_F}\right)^2$

- Scan $E_{beam} = 260-300 \text{ MeV}$ in steps of $\sim 0.7 \text{ MeV}$
- About 10¹⁰ positrons-on-target (POT) per scan point
- 47 points around X17 mass, 5 below, 1 above

Electron motion in thin targets

- Assumption of electron at rest in thin targets is not so accurate
- Recent more accurate calculation of resonant production σ using Compton Profile reveals broadening and lowering of resonance peak
- Impacts expected sensitivity of PADME Run III

PADME sensitivity

-KLOE, 2015

Improved sensitivity for PADME Run IV

- Strategy to improve sensitivity for Run IV:
 - 1. Decrease statistical & uncorrelated systematic uncertainties

Alternative hypothesis:

Null hypothesis:

 $N_2(\sqrt{s}) = N_{\text{POT}}(\sqrt{s}) \times [B(\sqrt{s}) + S(\sqrt{s}; m_X, g) \varepsilon(\sqrt{s})]$

 $N_2(\sqrt{s}) = N_{\rm POT}(\sqrt{s}) \times B(\sqrt{s})$

Symbol	Description	Туре	Run III estimated	
$B(\sqrt{s})$	Number of bkg. events	Systematic	0.5% per point	
$\varepsilon(\sqrt{s})$	Signal efficiencies	Systematic	0.5% per point	
$N_{\rm POT}(\sqrt{s})$	Number of e^+ on target	Systematic	0.5% per point	
	Total systematic	Systematic	0.7-0.9% per point	
$N_2(\sqrt{s})$	Total num. of 2-body events	Statistical	0.42-0.47% per point	
$S(\sqrt{s}; m_X, g)$	Signal shape	Theoretical	< 3%	

- Strategy to improve sensitivity for Run IV:
 - 1. Decrease statistical & uncorrelated systematic uncertainties

6 months of data taking foreseen in 2025 \rightarrow double the time and half the scan points

Alternative hypothesis:

Null hypothesis:

 $N_2(\sqrt{s}) = N_{\text{POT}}(\sqrt{s}) \times [B(\sqrt{s}) + S(\sqrt{s}; m_X, g) \varepsilon(\sqrt{s})]$

 $N_2(\sqrt{s}) = N_{\rm POT}(\sqrt{s}) \times B(\sqrt{s})$

Symbol	Description	Туре	Run III estimated	Run IV projected
$B(\sqrt{s})$	Number of bkg. events	Systematic	0.5% per point	0.3%
$\varepsilon(\sqrt{s})$	Signal efficiencies	Systematic	0.5% per point	0.3%
$N_{\rm POT}(\sqrt{s})$	Number of e^+ on target	Systematic	0.5% per point	N/A
	Total systematic	Systematic	0.7-0.9% per point	0.5%
$N_2(\sqrt{s})$	Total num. of 2-body events	Statistical	0.42-0.47% per point	0.2% (x4 stats.)
$S(\sqrt{s}; m_X, g)$	Signal shape	Theoretical	< 3%	

- Strategy to improve sensitivity for Run IV:
 - 1. Decrease statistical & uncorrelated systematic uncertainties
 - 2. Normalize events to $e^+e^- \rightarrow \gamma\gamma$ instead of measuring $N_{\rm POT} \rightarrow$ new detector needed

New MicroMegas tagger to distinguish γ and e^+/e^- final states

- Composition:
 - Two 5-cm drift chambers for tracking
 - APV readout chip
 - Ar:CF4:isobutane gas mixture
- Features:
 - High segmentation
 - Tracking capability
 - Good transverse resolution
 - Small radiation length footprint
- Physics benefits:
 - Cluster shape analysis
 - Vertex reconstruction (→ displaced searches)
 - Improved Tag & Probe for efficiency estimation

- Strategy to improve sensitivity for Run IV:
 - 1. Decrease statistical & uncorrelated systematic uncertainties
 - 2. Normalize events to $e^+e^- \rightarrow \gamma\gamma$ instead of measuring $N_{\text{POT}} \rightarrow$ new detector needed
- Expected limits (still **blinded**) to be improved by a factor of 2-3:

- PADME is a thin fixed-target experiment searching for light new particles with a unique sub-GeV energy positron beam
- Sensitive to low-mass dark photons in the range ~ 2-20 MeV
- Runs I and II enabled calibration and commissioning, as well as precise measurement of $\sigma(e^+e^- \rightarrow \gamma\gamma)$ at $\sqrt{s} = 21$ MeV \rightarrow first improvement in many decades
- Run III of PADME dedicated to a direct search for X17 using resonant production
 - Analysis to be unblinded soon...
- Run IV in preparation to **completely cover remaining X17 parameter space**
 - New MicroMegas tagger to distinguish final-state e/γ clusters and improve sensitivity
 - Additional sensitivity to displaced signatures will be possible
- The saga continues!

Beam energy scan around resonance

- Strategy: scan $E_{beam} = 260-300$ MeV in steps of ~ 0.7 MeV
- Collected about 10¹⁰ positrons-on-target (POT) per point in the scan
- 47 points around mass of X17 resonance, 5 below, 1 above
- With this dataset PADME can probe interesting and viable parameter space

Main physics backgrounds

IΕ

$e^+e^- \rightarrow \gamma\gamma$ cross-section measurement **PADME**

PADME calorimeters

Electromagnetic calorimeter

- 616 scintillating BGO crystals from old L3 expt. at LEP
- 3 m downstream of target
- Single-crystal dimensions: 2.1 x 2.1 x 23 cm³
- BGO scintillation time: ~ 300 ns
- Central square hole (5x5 SC) to evade Bremsstrahlung
- Angular reach: 20-65 mrad
- Energy resolution: ~ 2%/Sqrt[E]

Small-angle calorimeter

- 25 Cherenkov PbF₂ crystals
- Immediately downstream of ECAL
- Single-crystal dimensions: 3.0 x 3.0 x 14 cm³
- PbF₂ dead time: ~ 3 ns
- Fits behind the ECAL central square hole
- Angular reach < 20 mrad
- Energy resolution: ~ 6%/Sqrt[E]

A' production and decay in accelerators

