## Enhanced Dark Sector Production In Beam Dumps From Electromagnetic Cascades



ARXIV: <u>2401.06843</u>, ARXIV: <u>2410.XXXXX</u>,

Caltech

Neutrino Theory Network

DARK INTERACTIONS | VANCOUVER, BRITISH COLUMBIA | OCTOBER 2024





## Motivation & Context



Muons, Neutrinos



2

### DARK SECTORS | SM SINGLETS, PORTALS & NEW PHYSICS

- If light new physics exists it must be a gauge singlet.
- Possibly complex dark sector (e.g. SM-like).
- Few singlet operators available. Focus on "portals".







## Motivation

- Q: How many ways can light new physics couple to the SM?
- A: Not many once you restrict to low-dim operators!



• • •

### $\phi^2 |H|^2$ or LHN or $B^{\mu u}B'_{\mu u}$ **Z-Prime** HNS





# Existing Searches

$$10^{-2}$$
  
 $5$   
 $10^{-3}$ 

ALPS



### Broad & competitive phenomenological landscape

# Existing Searches

### Ψ 10<sup>-2</sup> Bevond $10^{-3}$ Colliders $10^{-4}$ $10^{-5}$ $10^{-6}$ $10^{-7}$ $10^{-8}$ 10

### DARK PHOTONS

### Broad & competitive phenomenological landscape



#### HOW TO MAKE A BSM BEAM







### Beam

target

## How Do These Experiments Work



### detector





### ~ (10 – 100) GeV



IN NEUTRINO EXPERIMENTS

#### LONG LIVED





## **Option 2: Primary Production**

#### PROTON BREMMSTRAHLUNG

### $pp \rightarrow ppX$

### ~ (10 – 100) GeV



D







### 

~ (10 – 100) GeV





# **Electromagnetic Secondaries**



### Electrophilic Light New Physics



## 

Characteristic length between collisions

### JMFP



• Characteristic length between hard collisions  $X_H$ 

- Hadrons "down convert" energy into pions.
- Every generation is a new chance to make a BSM particle.
- Multiplicity of interactions grows with energy.

NEW RESOURCE BUT HARD STUDY SYSTEMATICALLY.





### ELECTRONS & PHOTONS



• Characteristic length between **hard** collisions  $X_0$ 

Main reactions are

 $\gamma Z \rightarrow e^+ e^- Z \quad e^\pm Z \rightarrow e^\pm \gamma Z$ 

• Multiplicity of interactions grows with energy.

### Radiation length



### ELECTRONS & PHOTONS



• Characteristic length between **hard** collisions  $X_0$ 

Main reactions are

 $\gamma Z \rightarrow e^+ e^- Z \quad e^\pm Z \rightarrow e^\pm \gamma Z$ 

• Multiplicity of interactions grows with energy.

NEW RESOURCE FOR DARK SECTORS. CAN BE COMPUTED PERTURBATIVELY.

### Radiation length



# Hadronic And Electromagnetic Cascades

### Consider a particle propagating through medium

#### ELECTRONS & PHOTONS



• Characteristic length between **hard** collisions  $X_0$ 

Main reactions are

 $\gamma Z \rightarrow e^+ e^- Z \quad e^\pm Z \rightarrow e^\pm \gamma Z$ 

• Multiplicity of interactions grows with energy.

NEW RESOURCE FOR DARK SECTORS. CAN BE COMPUTED PERTURBATIVELY.

### Radiation length



## Previous Work On EM Secondaries

1807.058 PHYSICAL REVIEW LETTERS 121, 041802 (2018)

Novel Way to Search for Light Dark Matter in Lepton Beam-Dump Experiments

L. Marsicano,<sup>1,2</sup> M. Battaglieri,<sup>1</sup> M. Bondí,<sup>3</sup> C. D. R. Carvajal,<sup>4</sup> A. Celentano,<sup>1</sup> M. De Napoli,<sup>3</sup> R. De Vita,<sup>1</sup> E. Nardi,<sup>5</sup> M. Raggi,<sup>6</sup> and P. Valente<sup>7</sup>

#### PHYSICAL REVIEW D 102, 075026 (2020)

2006.09419

New production channels for light dark matter in hadronic showers

A. Celentano<sup>0</sup>, <sup>1</sup> L. Darmé, <sup>2</sup> L. Marsicano, <sup>1</sup> and E. Nardi<sup> $0^2$ </sup>

#### PHYSICAL REVIEW D 98, 015031 (2018)

1802.03794

#### Dark photon production through positron annihilation in beam-dump experiments

L. Marsicano,<sup>1,2</sup> M. Battaglieri,<sup>1</sup> M. Bondí,<sup>3</sup> C. D. R. Carvajal,<sup>4</sup> A. Celentano,<sup>1</sup> M. De Napoli,<sup>3</sup> R. De Vita,<sup>1</sup> E. Nardi,<sup>5</sup> M. Raggi,<sup>6</sup> and P. Valente<sup>7</sup>

| 84 |  |
|----|--|

#### **Event generation for beam dump experiments**

Luca Buonocore,<sup>*a,b*</sup> Claudia Frugiuele,<sup>*c*</sup> Fabio Maltoni,<sup>*d,c*</sup> Olivier Mattelaer,<sup>*d*</sup> Francesco **Tramontano**<sup>b</sup> 1812.06771

2108.03262

#### PHYSICAL REVIEW D 104, 115010 (2021)

#### Extending the reach of leptophilic boson searches at DUNE and MiniBooNE with bremsstrahlung and resonant production

Francesco Capozzi<sup>(D)</sup>,<sup>1</sup> Bhaskar Dutta,<sup>2</sup> Gajendra Gurung<sup>(D)</sup>,<sup>3</sup> Wooyoung Jang,<sup>3</sup> Ian M. Shoemaker,<sup>1</sup> Adrian Thompson,<sup>2</sup> and Jaehoon Yu<sup>3</sup>

Fully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments \*, \*\*

M. Bondi<sup>a</sup>, A. Celentano<sup>a</sup>, R.R. Dusaev<sup>b</sup>, D.V. Kirpichnikov<sup>c</sup>, M.M. Kirsanov<sup>c</sup>, N.V. Krasnikov<sup>c,d</sup>, L. Marsicano<sup>a</sup>, D. Shchukin<sup>e</sup>



## Previous Work On Electromagnetic Cascades

Event generation for beam dump experiments 1807.05884 PHYSICAL REVIEW LETTERS 121, 041802 (2018) Despite multiple groups and a reasonable amount of Novel Way t activity, no systematic comparison between results has L. Marsicar been made. Naive comparisons suggest large differences (orders of magnitude in some cases) New pr Want a systematic analysis to resolve discrepancies. Dai

L. Marsicano,<sup>1,2</sup> M. Battaglieri,<sup>1</sup> M. Bondí,<sup>3</sup> C. D. R. Carvajal,<sup>4</sup> A. Celentano,<sup>1</sup> M. De Napoli,<sup>3</sup> R. De Vita,<sup>1</sup> E. Nardi,<sup>5</sup> M. Raggi,<sup>6</sup> and P. Valente<sup>7</sup>

M. Bondi<sup>a</sup>, A. Celentano<sup>a</sup>, R.R. Dusaev<sup>b</sup>, D.V. Kirpichnikov<sup>c</sup>, M.M. Kirsanov<sup>c</sup>, N.V. Krasnikov<sup>c,d</sup>, L. Marsicano<sup>a</sup>, D. Shchukin<sup>e</sup>



## Previous Work On EM Secondaries

## PHYSICAL REVIEW LETTERS 121, 041802 (2018) 1807.05884 Event generation for beam dump experiments Despite multiple groups and a reasonable amount of

### Dark fluxes from electromagnetic cascades **C**

### Nikita Blinov,<sup>1,2</sup> Patrick J. Fox,<sup>3</sup> Kevin J. Kelly,<sup>4,5</sup> Pedro A.N. Machado,<sup>3</sup> Ryan Plestid<sup>6</sup> • VVANT A SYSTEMATIC ANALYSIS TO RESOLVE DISCREPANCIES.

Dai

L. Marsicano,<sup>1,2</sup> M. Battaglieri,<sup>1</sup> M. Bondí,<sup>3</sup> C. D. R. Carvajal,<sup>4</sup> A. Celentano,<sup>1</sup> M. De Napoli,<sup>3</sup> R. De Vita,<sup>1</sup> E. Nardi,<sup>5</sup> M. Raggi,<sup>6</sup> and P. Valente<sup>7</sup>

### 2401.06843

M. Bondi<sup>a</sup>, A. Celentano<sup>a</sup>, R.R. Dusaev<sup>b</sup>, D.V. Kirpichnikov<sup>c</sup>, M.M. Kirsanov<sup>c</sup>, N.V. Krasnikov<sup>c,d</sup>, L. Marsicano<sup>a</sup>, D. Shchukin<sup>e</sup>



## **Challenges With Far-Forward Detectors**

#### SMALL ANGLES

## $\Phi(\theta, E) \quad \text{for} \quad \theta < \theta_c$

#### UNUSUALLY SENSITIVE TO ANGULAR SPREADING



## **Challenges With Far-Forward Detectors**

### LARGE HIERARCHY OF ENERGIES

#### NEED TO WORRY ABOUT MANY GENERATIONS IN A SHOWER





# **Explicit Model: Dark Vector Boson** $\mathscr{L} \mathcal{D} g \bar{e} \gamma_{\mu} e V^{\mu}$



• Vector boson of mass  $m_V$  couples to the electron vector current.





## Explicit Model: Dark Vector Boson $\mathcal{L} \supset g \bar{e} \gamma_{\mu} e V^{\mu}$

detector.

 $\Phi_{det}(E_V)$ 

### Our goal is to compute the flux from an EM cascade at the





### Consider an event in a MC event record. $(\mathbf{p}, \mathbf{x})_e \rightarrow (\mathbf{p}', \mathbf{x})_e + (\mathbf{q}', \mathbf{x})_{\gamma}$





## SM Frent $\rightarrow$ BSM Event

## $(\mathbf{p}, \mathbf{x})_e \rightarrow (\mathbf{p}', \mathbf{x})_e + (\mathbf{q}', \mathbf{x})_{\gamma}$

DRAW KINEMATICS FROM BSM DIST.

FOCUS ON PARENT

COMPUTE **BRANCHING RATIO** 



# $\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} = (2\pi)^4 \delta^{(4)}(\Sigma P) \left| \mathcal{M}_{e \to eV} \right|^2$

 $RR = \frac{O_{BSM}}{\sim} \approx \frac{O_{BSM}}{\sim}$  $\sigma_{\rm SM}$  $\sigma_{\rm tot}$ 

### What Not To Do



![](_page_26_Picture_0.jpeg)

- Static nuclear centres source Coulomb fields.
- Electrons treated as a homogeneous gas of electrons at rest.
- Atomic screening included for bremsstrahlung and pair production.

### PROCESSES INCLUDED

•  $e^{\pm}Z \rightarrow e^{\pm}\gamma Z$ 

•  $\gamma Z \rightarrow e^+ e^- Z$ 

•  $e^{\pm}e^{-} \rightarrow e^{\pm}e^{-}$ 

•  $\gamma e \rightarrow \gamma e$ 

Continuous energy OSS Multiple Coulomb scattering.

![](_page_26_Picture_11.jpeg)

![](_page_26_Picture_12.jpeg)

#### PAIR PRODUCTION

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

## Implemented In PETITE

#### 

#### PETITE

PETITE: Package for Electromagnetic Transitions In Thick-target Environments Monte Carlo generator for production of dark sector objects in thick-target experiments PETITE generates electromagnetic showers for incoming electron, positron or photon propagating through a dense medium, and includes the possibility of dark sector particle production.

#### Installation

To install, from the top directory run

pip install .

#### Dependencies

PETITE, its tutorials and tools require the following packages: numpy 1.24, vegas (>= 5.4.2), cProfile, pickle, matplotlib, scipy, datetime, tqdm, copy, sys, random and functools. Using pip install . should install all requirements, but if needed, you can manually install these packages with

pip install <package\_name>==<version\_required>

![](_page_29_Picture_11.jpeg)

HTTPS://GITHUB.COM/KJKELLYPHYS/PETITE

![](_page_29_Figure_13.jpeg)

![](_page_29_Picture_14.jpeg)

## Join A Growing Community!

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

HTTPS://GITHUB.COM/KJKELLYPHYS/PETITE

![](_page_30_Figure_5.jpeg)

![](_page_30_Picture_6.jpeg)

![](_page_31_Picture_0.jpeg)

## The Lifetime Frontier

### Lower Energies And Shorter Lifetimes

## Particle Multiplicity

![](_page_32_Figure_2.jpeg)

#### PETITE Track Length vs Analytics (Bremsstrahlung and Pair Production Only)

## Lifetimes & Production Spectra

- Secondary, tertiary, etc. particles have *lower energies*.
- This means they have decay faster in the lab frame  $\lambda = c\beta\gamma\tau \propto E_V$
- In the long-lifetime limit the probability of decay goes like

$$P_{\rm decay} \simeq -$$

![](_page_33_Picture_8.jpeg)

![](_page_33_Picture_9.jpeg)

Lpipe

## Lifetimes & Production Spectra

#### **DARK PHOTON**

![](_page_34_Figure_2.jpeg)

![](_page_34_Picture_3.jpeg)

#### ELECTROPHILLIC

## Impact For LLP Searches

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

![](_page_36_Figure_0.jpeg)

# Application To SHiP

### **Enhancements At The Lifetime Frontier**

![](_page_36_Picture_4.jpeg)

## Quick Intro To SHiP

### **PROTON BEAM**

### 400 GeV

#### PROTONS ON TARGET

 $6 \times 10^{20}$ 

#### **DECAY PIPE**

80 m  $\sim$ JU

![](_page_37_Picture_7.jpeg)

![](_page_37_Picture_8.jpeg)

Excellent sensitivity to long-lived particles.

 Also has a scattering detector and tau-neutrino program.

### • Uses SPS beam at CERN.

### Dark Vector Production In A Proton Beam Dump

PRIMARY MESONS

 $\pi^0 \to \gamma V$  $\eta \rightarrow \gamma V$ 

PROTON BREMS.

 $pA \rightarrow pAV$ 

**PERTURBATIVE QCD** 

 $q\bar{q} \rightarrow V$ 

![](_page_38_Picture_7.jpeg)

#### CASCADE PRODUCTION

 $e^+e^- \rightarrow V(\gamma)$ 

 $Ze^{\pm} \rightarrow Ze^{\pm}V$ 

 $\gamma e^- \rightarrow e^- V$ 

### Dark Vector Production In A Proton Beam Dump

PRIMARY MESONS

 $\pi^0 \to \gamma V$  $\eta \to \gamma V$ 

 $pA \rightarrow pAV$ 

 $q\bar{q} \rightarrow V$ 

![](_page_39_Picture_7.jpeg)

### CASCADE PRODUCTION

 $e^+e^- \rightarrow V(\gamma)$ 

 $Ze^{\pm} \rightarrow Ze^{\pm}V$ 

 $\gamma e^- \rightarrow e^- V$ 

## Gains In Sensitivity

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

![](_page_40_Picture_5.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

# Energy Threshold Dependence

 $e^+e^- \rightarrow V(\gamma)$  $\simeq \frac{m_V^2}{2m_e}$ Eres

 Motivates exploring lower thresholds at SHiP

![](_page_43_Picture_4.jpeg)

# Conclusions & Outlook

- ----

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

## Conclusions

- SHiP can substantially extend its sensitivity to dark vectors by adding EM cascade production.
- There is an open source tool **PETITE** that can be used immediately to run simulations.
- Gains are per- $\pi^0 \Longrightarrow$  robust against hadronic modelling.
- Biggest gains in sensitivity come at long-lifetimes.
- The smaller boost helps particles decay in the decay pipe.

![](_page_45_Picture_6.jpeg)