

SEMI-ANALYTICAL MODELLING OF NUCLEAR RECOIL TRACKS IN MINERALS WITH SRIM

Physics: Yilda Boukhtouchen, Joseph Bramante, <u>Audrey Fung</u>, Aaron Vincent

Geology: Matthew Leybourne, Sharlotte Mkhonto

Mechanical and Material Engineering: Levente Balogh, Thalles Lucas

WHY PALEO-DETECTION?

Baudis, L. (2024). DARWIN/XLZD: A future xenon observatory for dark matter and other rare interactions. Nuclear Physics. B, 1003, 116473-. https://doi.org/10.1016/j.nuclphysb.2024.116473

WHAT IS PALEO DETECTION?

- DM or any other incident particles with new physics interactions
- PKA: primary knock-on atom
- E_R : recoil energy of the PKA
- x:length of the damage track (or track length)

Dickin, A. P. (2005). Radiogenic isotope geology (2nd ed.). Cambridge University Press.

TRIM (TRANSPORT OF IONS IN MATTER)

- a Monte Carlo program that calculates interatctions of ions with amorphous targets
 - simulates cascades of produced by irradiated ions
 - record the locations of all collisions between irradiated ions and target atoms
- e.g. irradiate a 5keV ion onto Olivine 40000 times

DEFINING TRACK LENGTH

6

TRACK LENGTH DISTRIBUTION OF Si IN OLIVINE $(Mg, Fe)_2 SiO_4$

ONE-TO-ONEVS 2D DENSITY

STOPPING MECHANISM

NEW E_R - X_T RELATION

$$\frac{dR}{dx} = \frac{dR}{dE} \times \left| \frac{dE}{dx} \right|$$
$$\int$$
$$\frac{dR}{dx}(x) = \int dE_R \frac{dR}{dE_R}(E_R) \mathscr{P}(E_R | x) \times \mathscr{P}(\text{trace})$$

• $\mathcal{P}(E_R | x)$: the probability that a track length x is induced by a recoil with energy E_R

 $\mathscr{P}(\text{track})$: the probability that a track is formed

DIFFERENTIAL RECOIL SPECTRA

EXPERIMENTAL CONSIDERATIONS

MINERAL SELECTION

- Near surface minerals: heat and pressure could 'heal' damage tracks
- avoid hydrous minerals: generally less stable than anhydrous ones
- Iow Uranium concentration: reduce backgrounds
- candidates: Olivine*, Galena

READOUTTECHNIQUES

- Scanning Electron Microscope (SEM)
 - I-I0 nm resolution
- Transmission Electron Microscope (TEM)
 - 0.1 1 nm resolution
 - very time-consuming

EXPERIMENTAL CALIBRATION AT QUEEN'S

Reactor Material Testing Laboratory 18

SUMMARY

- we see a broad distribution of track lenghths at a given recoil energy
- at low energies, recoils don't always result in tracks
- limits should weaker than expected from stopping power calculation

Thank you for listening!

20

BACK-UP SLIDES

PRINCIPAL COMPONENT PROJECTION

22

BEZIER CURVE FITTING

- defined by control points
- **B** $(t) = \mathbf{P}_0 + t(\mathbf{P}_1 \mathbf{P}_0), \ 0 \le t \le 1$
- better fits to arbtirary geometric features
- controllable resolution

BEZIER CURVE FITTING

BINNED DISTRIBUTION

25

PROBABILITY OF TRACK FORMATION

26

OVERVIEW OF PALEO-DETECTORS DEVELOPMENT

- Price
- M. Gorski, P. Stengel
- Other works on: WIMP DM, composite DM, axions, neutrinos etc.

Limits on Dark Matter using Ancient Mica (1995): D.P. Snowden-Ifft, E.S. Freeman and P.B.

Searching for Dark Matter Using Paleo-detectors (2018): S. Baum, A.K. Drukier, K. Freese,

