16th International Conference on Muon Spin Rotation, Relaxation and Resonance (µSR2025)

Contribution ID: 4

Type: Poster Presentation

How DFT Calculations Contribute to μ^+ SR Work on Battery Materials

Internal nuclear magnetic fields in various battery materials have been predicted using density functional theory (DFT) calculations to interpret the μ^+ SR results, particularly for identifying the diffusing species responsible for the dynamic behavior observed. In materials where Li⁺ and Na⁺ ions are mobile, these cations readily change positions to minimize electrostatic repulsion with the implanted μ^+ . As a result, the μ^+ sits at the bottom of a deep potential well, stabilizing itself through a "self-trapping" effect, making it a stable observer for detecting ion diffusion in battery materials. In contrast, in many metals and oxides, the implanted μ^+ diffuses even at low temperatures. In these materials, the local lattice distortion caused by the implanted μ^+ is relatively small compared to that in battery materials. To assess the stability of the implanted μ^+ , we propose a ratio between the measured nuclear magnetic field distribution width ($\Delta^{\rm exp}$) and the DFT-predicted value without lattice relaxation ($\Delta^{\rm min}$), namely, $\Delta^{\rm exp}/\Delta^{\rm min}$, as an indicator of whether cations or μ^+ are diffusing. This indicator provides a comprehensive understanding of the diffusive behavior detected with μ^+ SR in various materials, including battery materials, metals, and other oxides.

Email

juns@triumf.ca

Funding Agency

JSPS KAKENHI Grant Numbers JP18H01863, JP20K21149, and JP23H01840.

Supervisors Name

Supervisors Email

Did you request an Invitation Letter for a Visitors Visa Application

Primary authors: Prof. OHTA, Hiroto (Doshisha University); SUGIYAMA, Jun (CROSS Neutron Science and

Technology Center)

Presenter: SUGIYAMA, Jun (CROSS Neutron Science and Technology Center)

 $\textbf{Session Classification:} \ \ Poster \ Session \ 1$

Track Classification: Energy storage materials