

Contribution ID: 29

Type: Poster Presentation

μSR on a Driven Helimagnet

To extend μ SR to driven samples, we employ a microwave stimulus to excite the sample by ferromagnetic resonance (FMR) and probe the resultant effect with the muon. The experiments were performed on the helimagnet Cu₂OSeO₃, which exhibits distinct FMR and μ SR signatures throughout its magnetic phase diagram. FMR excitations in the helical state cause precession, which is characterized by a dynamic component $M_{\rm uw}$ and an associated reduction in static moment ΔM (Fig. 1a). Both LF- and TF- μ SR data exhibit a reduction in the frequency $\nu_{\rm fast}$ of the fast-oscillation component, which we attribute to the reduction of the static moment ΔM (Fig. 1b for LF).

Besides ΔM and $M_{\rm uw}$, a MHz precession of the entire magnetic helix akin to a screw has been predicted theoretically under FMR excitation [1]. While invisible in ordinary FMR, our combined FMR- μ SR approach is well suited for detection of this technologically relevant mode. Our preliminary LF data indicate a small change in the damping rate $\sigma_{\rm slow}$ of the slow decay component (see Fig. 1c). Further experiments at lower temperature and stronger microwave drive were, however, not supportive of such a screw mode.

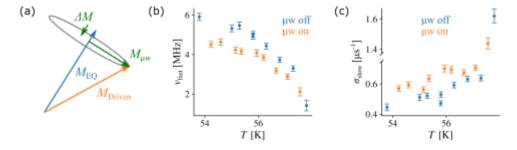


Figure 1: (a) Dynamic $M_{\rm uw}$ and ΔM of static component (b,c) $\nu_{\rm fast}$ and $\sigma_{\rm slow}$ from LF data

[1] N. del Ser, L. Heinen, A. Rosch, SciPost Phys. 11, 009 (2021).

Email

andrin.doll@psi.ch

Funding Agency

PSI

Supervisors Name

Supervisors Email

Did you request an Invitation Letter for a Visitors Visa Application

Primary author: DOLL, Andrin (Paul Scherrer Institute)

Co-authors: Dr HUDDART, Benjamin (University of Oxford); Prof. BALAKRISHNAN, Geetha (University of Warwick); Dr DREISER, Jan (Paul Scherrer Institute); WILSON, Murray (Memorial University of Newfoundland); Dr HOLT, Samuel J. R. (University of Warwick); PROKSCHA, Thomas (Paul Scherrer Institute); LAN-CASTER, Tom (Durham University); SALMAN, Zaher (PSI)

Presenter: DOLL, Andrin (Paul Scherrer Institute)

Session Classification: Poster Session 1

Track Classification: Magnetism