

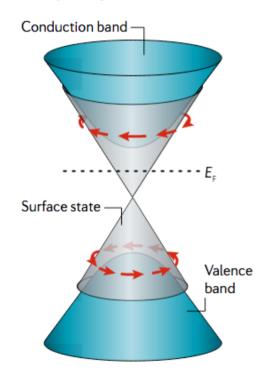
Mn antisites and order-disorder transition in the (MnBi₂Te₄) (Bi₂Te₃)_n magnetic topological insulators

Ifeanyi John Onuorah (University of Parma, Italy)

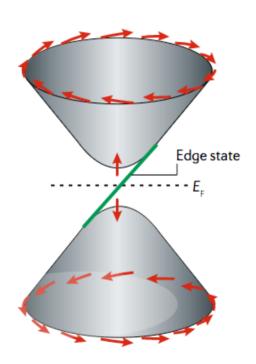
21st July, 2025

Outline

Interplay of topology and magnetic order: Case of MnBi₂Te₄

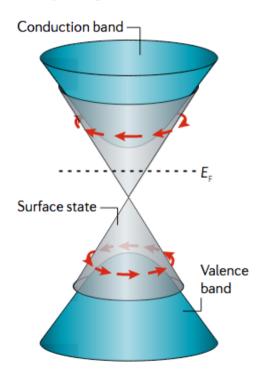

MnBi₂Te₄ a highly tunable material platform → the (MnBi₂Te₄).(Bi₂Te₃)n family

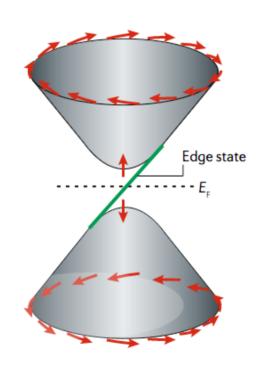
- Influence of native antisite intermixing on the magnetic behaviour of the (MnBi₂Te₄). (Bi₂Te₃)_n family: Insights from:
 - Bulk magnetometry measurements
 - ✓ NMR
 - ✓ µSR measurements


Summary

Interplay of topology and magnetic order

Topological Insulator

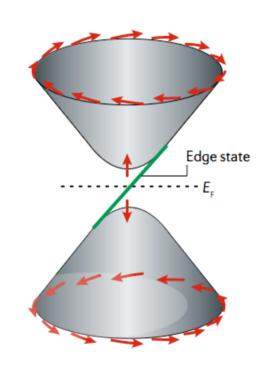

Magnetic topological Insulator


- Insulating bulk & conducting surface state
- Massless Dirac-like dispersion of the surface state
- Breaking time reversal symmetry in the presence of magnetism can open a gap in topological surface states
- Can enable versatile and tunable quantum phases including:
 - High-order topological phases
 - Axion electrodynamics
 - Quantum anomalous Hall effect

Interplay of topology and magnetic order

Topological Insulator

Magnetic topological Insulator

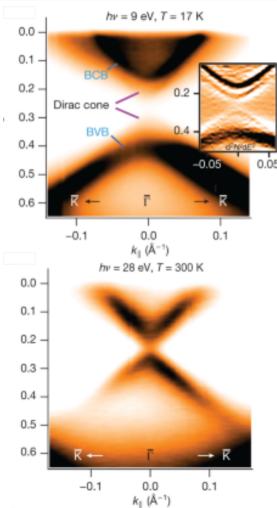

Ordinarily realized by chemical doping of topological insulators with transition metal oxides

Interplay of topology and magnetic order

Topological Insulator

Conduction band -Surface state Valence band

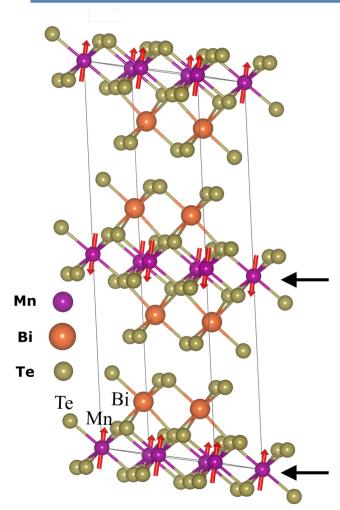
Magnetic topological Insulator



- Ordinarily realized by chemical doping of topological insulators with transition metal oxides
- MnBi₂Te₄: first intrinsic magnetic topological insulator predicted by DFT

J.Li et.al, Sci. Adv.5, eaaw 5685 (2019)

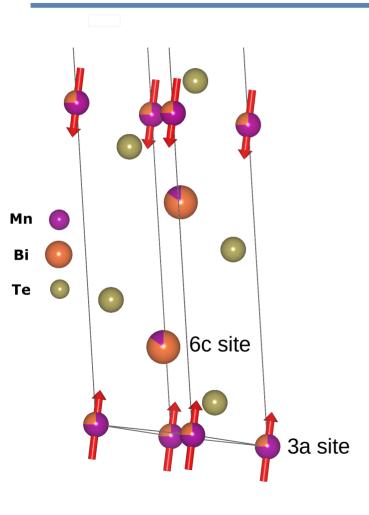
Experimental detection of magnetic gap in the surface states MnBi₂Te₄ films


The surface gap states are realized experimentally with ARPES and also STM measurements but under multiple tunning knobs including temperature, magnetic field, and pressure

Highlights the fragility in the detection of the surface gap states

Attributed from theoretical predictions to roles of antisite intermixing in the reduction of Dirac point gap

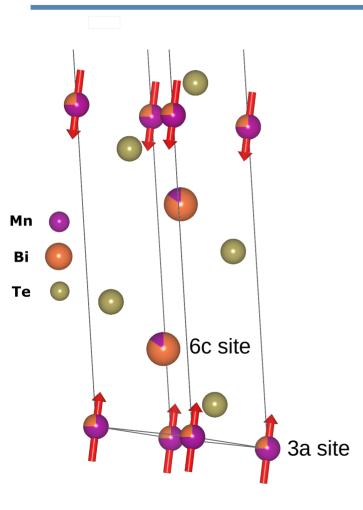
M.M Otrokov et al,, Nature 576, 416-422 (2019)


MnBi₂Te₄: highly tunable material platform

- Septuple layered Van der Waals compound
- Mn @ 3a (Mn_{3a}) & Bi @ 6c (Bi_{6c}) Wyckoff positions
- ► Local magnetic moments at the Mn_{3a} sites adopt an A-type AFM order of FM alignment within the Mn layer.

- Aside the intrinsic properties, MnBi₂Te₄ is highly tunable Variations of chemical composition,
 - MnSb₂Te₄
 - MnBi₂Se₄
- Van der waals nature allows for interlacing the adjacent septuple layers with a number of of n nonmagnetic Bi₂Te₃ quintuple layers, thus the (MnBi₂Te₄)(Bi₂Te₃)_n family

Intersite mixing


Phase-pure polycrystalline samples

Intermixing btw the Mn & pnictogen sites, whose composition depends on crystal growth conditions

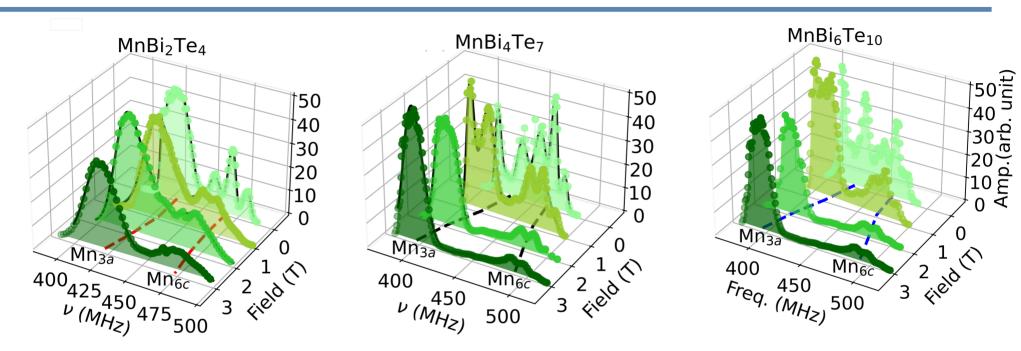
► Mn dominates the 3a (Mn_{3a}) & Bi dominates the 6c site (Bi_{6c})

- with intermixing, Mn partially occupies (\sim 0.006) the 6c site (\mathbf{Mn}_{6c})
- while Bi partially occupies (0.22) the 3a site (Bi_{3a})
 .

Intersite mixing: Earlier neutron diffraction

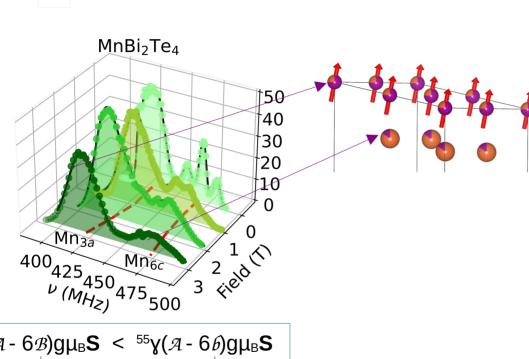
Intersite-mixing is favoured by similar ionic radii e.g in MnSb₂Te₄, the Mn and Sn radii are closer.

The strong intermixing in MnSb₂Te₄ promotes FM inter-layer coupling


In MnSb₂Te₄, neutron diffraction measurements reveal local moment at the Mn_{6c} site and coupled antiferromagnetically to Mn_{3a}, i.e ferrimagnetic structure

► Instead for the (MnBi₂Te₄)(Bi₂Te₃)_n family, likely because of the lower levels of intermixing, neutron diffraction has been elusive so far on the roles and nature of antisites.

Investigate the nature of intermixing and its influence on the magnetic behaviour and phase diagram of the $(MnBi_2Te_4)(Bi_2Te_3)_n$ family utilizing local probe techniques (NMR and μ SR).


NMR results

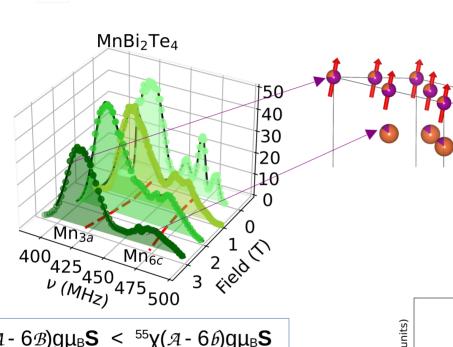
⁵⁵Mn NMR peaks in the (MnBi₂Te₄)(Bi₂Te₃)_n family

- NMR spectra at 1.4 K for increasing fields
- Two broad peaks pattern, with centers peaked at different frequencies
- ► Signifies two distinct ⁵⁵Mn sites, experiencing different local fields
- Frequency splits increases with the applied field

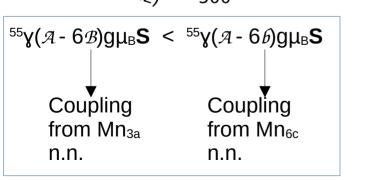
⁵⁵Mn NMR peak assignment

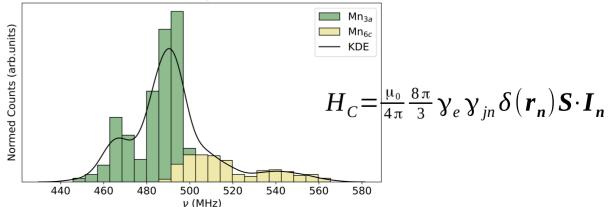
At high fields (3T), enhancement more uniform,

Considering large area, signal proportionality


Mn_{3a} lower frequency majority peaks

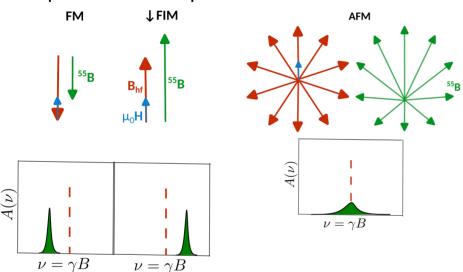
Mn_{6c} higher frequency minority peaks


 55 γ(\mathcal{A} - 6 \mathcal{B})gμ_B**S** < 55 γ(\mathcal{A} - 6 \mathcal{B})gμ_B**S**Coupling from Mn_{3a} from Mn_{6c} n.n. n.n.

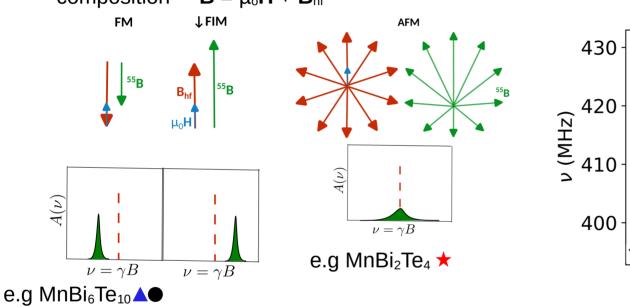

M. Sahoo, I. J. Onuorah et al., Adv. Sci., 11, 34, 2402753, 2024

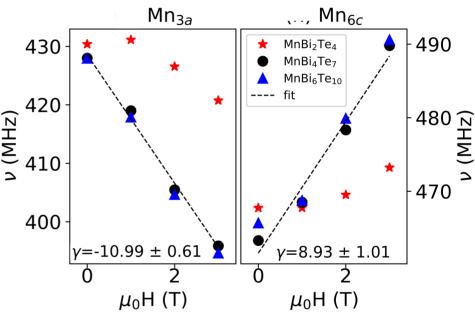
⁵⁵Mn NMR peak assignment

- At high fields (3T), enhancement more uniform,
 - Considering large area, signal proportionality
 - Mn_{3a} lower frequency majority peaks
 - Mn_{6c} higher frequency minority peaks
- Confirmed with DFT calculated isotropic contact hyperfine at Mn_{3a} & Mn_{6c}



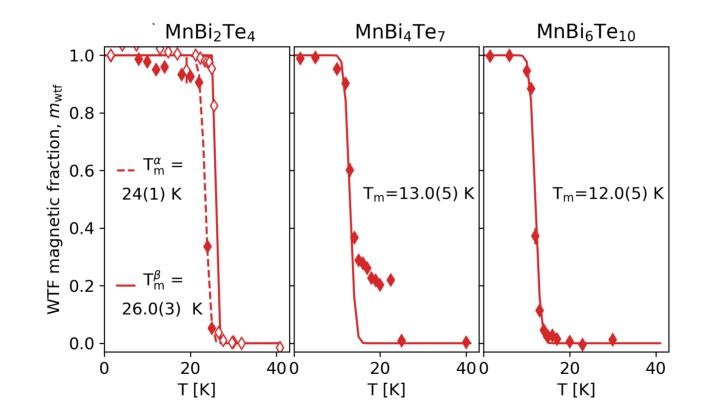
M. Sahoo, I. J. Onuorah et al., Adv. Sci., 11, 34, 2402753, 2024


⁵⁵Mn spin alignment assignment and magnetic order

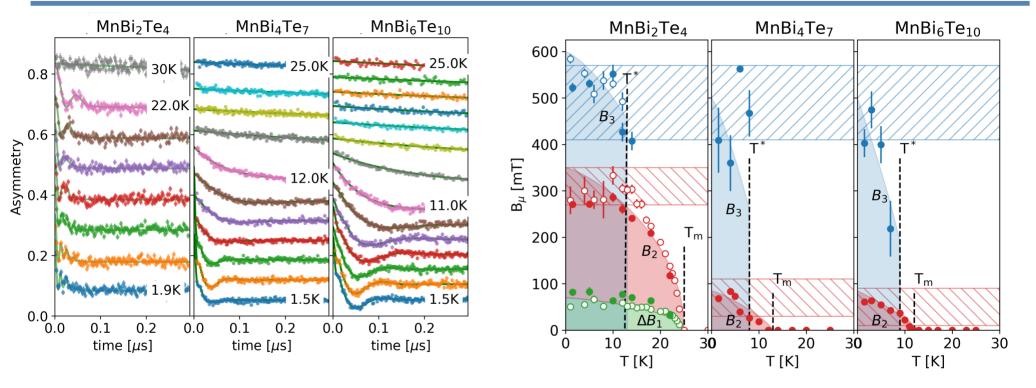

• Orientation of moments at antisites from field vector composition 55 **B** = μ_0 **H** + **B**_{hf}

⁵⁵Mn spin alignment assignment and magnetic order

 Orientation of moments at antisites from field vector composition ⁵⁵B = μ_oH + B_{hf}

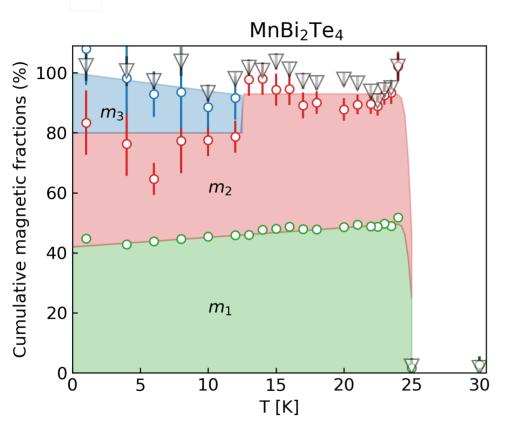


- ► Frequency shifts vs. applied field. Constant upto IT for MnBi₂Te₄ @Mn_{3a} confirming AFM
- ► MnBi₄Te₇ and MnBi₆Te₁₀ follow the FM like vector composition
- Opposite slopes of the Mn_{3a} and Mn_{6c} shift line with field, indicate antiparallel spin alignment


μSR results

wTF-μSR

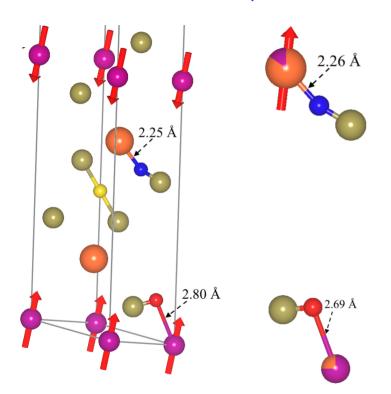
Sharp transitions, despite atomic disorder



zF-μSR

- 2 damped field precessions + 1 fast initial decay: 3 broad field distributions. (n= 0 sample diff from n=1,2)
- ► The lower fields (ΔB_1 and B_2) vanish at the second-order magnetic transition T_m
- ▶ Large field disappears at an intermediate transition T* < T_m

ZF-μSR: Volume fraction and Cumulative magnetic fractions

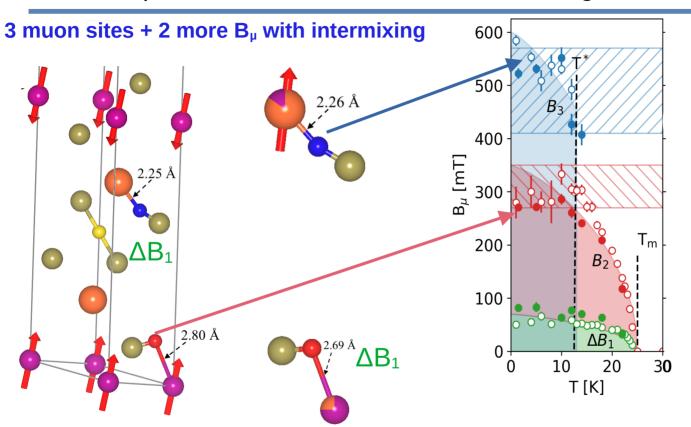


► m_L and $(m_1 + m_2)$ drop sharply at T_m

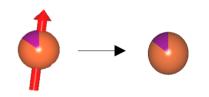
 m_3 disappears abruptly at $T^* \rightarrow$ muon sites sensitive to the subtle change in the sample

ZF-μSR – Muon sites and local field assignment with DFT+μ in MnBi₂Te₄

3 muon sites + 2 more B_{μ} with intermixing



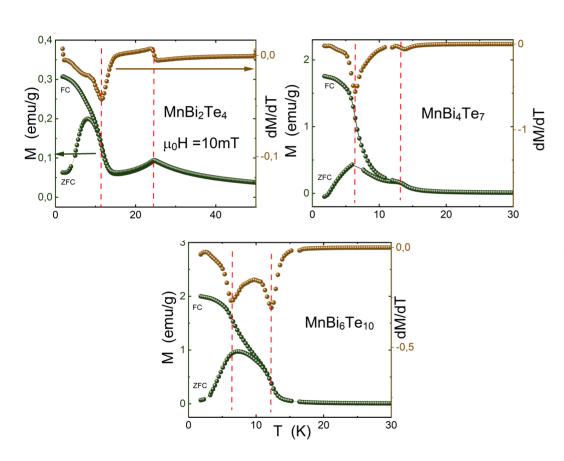
$$B_{\mu} \approx B_{dip} + B_C + B_L$$


$$B_{dip} = \frac{\mu_0}{4\pi} \left(\frac{-\mathbf{m}}{r^3} + \frac{3(\mathbf{m} \cdot \mathbf{r})\mathbf{r}}{r^5} \right)$$

$$B_C = \frac{2\mu_0}{3} |\psi(0)|^2 m$$

ZF-μSR – Muon sites and local field assignment with DFT+μ in MnBi₂Te₄

Vanishing of B₃ at T* is due to the order-disorder of the magnetic moment at the antisite Mn_{6c}


No ΔB_1 in MnBi₄Te₇ and MnBi₄Te₁₀ but contribution from BL due to FM order \rightarrow B₂

$$B_{\mu} \approx B_{dip} + B_C + B_L$$

$$B_{dip} = \frac{\mu_0}{4\pi} \left(\frac{-\mathbf{m}}{r^3} + \frac{3(\mathbf{m} \cdot \mathbf{r})\mathbf{r}}{r^5} \right)$$

$$B_C = \frac{2\mu_0}{3} |\psi(0)|^2 \boldsymbol{m}$$

Bulk Magnetic measurements

The two transitions are observed for all the $(MnBi_2Te_4)(Bi_2Te_3)_n$ samples for the temperature dependence of the magnetization.

 Transition temperature values are consistent with μSR results

Acknowledgment Co-authors

University of Parma, Italy

Roberto De Renzi

Giuseppe Allodi

Pietro Bonfà

Leibniz IFW & Institut MTU Dresden, Germany

Manaswini Sahoo

Laura Christina Folkers

Ekaterina Kochetkova

Anja U. B. Wolter

Bernd Büchner

Laura Teresa Corredor

Anna Isaeva

Laboratory for µSR @ PSI, Switzerland

INMA, CSIC-Universidad de Zaragoza, Spain

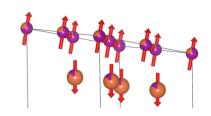
Zaher Salman

Chennan Wang

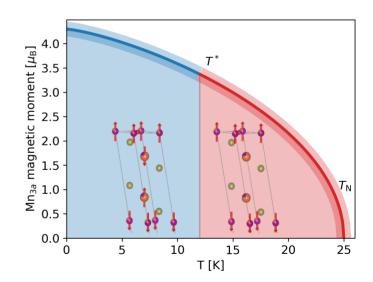
Mikhail M. Otrokov

DIPC, Sebastián, Spain

Evgueni V. Chulkov


Ziya S. Aliev

Imamaddin R. Amiraslanov^{k,}


Baku State University, Azerbaijan

Summary

NMR results confirm site intermixing and reveal that the Mn magnetic moments of the native sites (Mn_{3a}) and the antisites (Mn_{6c}) align opposite to each other in all the (Mn_{6c}) (Mn_{6c}) (Mn_{6c}) and (Mn_{6c}) (Mn_{6c}) (

- μSR results reveal two transitions in all the (MnBi₂Te₄)(Bi₂Te₃)_n samples due to order-disorder of the Mn antisites magnetic moment.
- More attention is required in the specific temperature range T*<T<TN, where most magnetic Tis will most probably fulfill all theoretical predictions (large magnetic surface gap).

