16th International Conference on Muon Spin Rotation, Relaxation and Resonance (µSR2025)

Contribution ID: 88

Type: Poster Presentation

Observation of Mermin-Wagner Behavior in LaFeO₃/SrTiO₃ and LaFeO₃/LaAlO₃ Superlattices

We report on the magnetic properties of two sets of superlattices composed of antiferromagnetic LaFeO₃, separated by either SrTiO₃ or LaAlO₃. The superlattices consist of 1, 2, or 3 unit cells of LaFeO₃, separated by 5 unit cells of SrTiO₃ in one set, and 5 unit cells of LaAlO₃ in the other, each repeated 10 times. The magnetic behavior was investigated using low-energy muon spin spectroscopy at the Paul Scherrer Institute. Our results reveal that superlattices containing 2 or 3 unit cells of LaFeO₃ exhibit static magnetic order for both separation materials, with comparable transition temperatures. In contrast, superlattices with a single unit cell of LaFeO₃ display dynamic behavior down to the lowest measured temperature of 4 K. Moreover, the behavior of electronic moments differs from that in superlattices with 2 and 3 unit cells of LaFeO₃ even above transition temperature and indicates slow fluctuation. Zero-field measurements suggest a temperature-dependent slowing down of electronic fluctuations. In line with the Mermin-Wagner theorem, no long-range magnetic order is observed in the one unit cell LaFeO₃ superlattices.

Email

michal.kiaba@northwestern.edu

Funding Agency

Supervisors Name

Supervisors Email

Did you request an Invitation Letter for a Visitors Visa Application

No

Primary author: KIABA, Michal (Northwestern University)

Co-authors: DUBROKA, Adam (Department of Condensed Matter Physics, Masaryk University); SUTER,

Andreas (Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute)

Presenter: KIABA, Michal (Northwestern University)

Session Classification: Poster Session 1

Track Classification: Thin films, surfaces and interfaces