16th International Conference on Muon Spin Rotation, Relaxation and Resonance (µSR2025)

Contribution ID: 122

Type: Poster Presentation

Superconducting Properties of Thin Film $Nb_{1-x}Ti_xN$ Studied via the NMR of Implanted 8 Li

We present a study of the normal-state and superconducting properties of thin-film $\mathrm{Nb_{1-x}Ti_x}N$ using depth-resolved $^8\mathrm{Li}$ β -detected nuclear magnetic resonance (β -NMR). Spin-polarized $^8\mathrm{Li^+}$ ions were implanted ~21 nm into a Nb_{0.75}Ti_{0.25}N(91 nm)/AlN(4 nm)/Nb sample, with their NMR response recorded at temperatures between 4.6 K to 270 K under a 4.1 T field applied normal to the film surface. The resonance spectra exhibit broad, symmetric lineshapes at all temperatures, with additional broadening observed below the superconducting transition temperature $T_{\rm c}\approx 15$ K attributed to vortex lattice formation. Lineshape broadening analysis yields the film's magnetic penetration depth λ and upper critical field $B_{\rm c2}$, whose values are in good agreement with literature estimates. Spin-lattice relaxation (SLR) data reveal Korringa behavior at low temperatures, with thermally activated dynamics dominated above ~100 K. Below $T_{\rm c}$, a small Hebel-Slichter coherence peak is observed, characterized by a 2.60 meV superconducting energy gap and modest Dynes-like broadening, consistent with strong-coupling superconductivity. These results provide a foundation for future studies of the Meissner-to-vortex transition in Nb_{0.75}Ti_{0.25}N/AlN/Nb heterostructures, which is relevant for next-generation Nb superconducting radiofrequency (SRF) cavities (common components of particle accelerators).

Email

asadm@uvic.ca

Funding Agency

Supervisors Name

Tobias Junginger

Supervisors Email

junginger@uvic.ca

Did you request an Invitation Letter for a Visitors Visa Application

Primary author: ASADUZZAMAN, Md (University of Victoria, BC, Canada)

Co-authors: Dr MCFADDEN, Ryan (TRIUMF Inc.); THOENG, Edward (TRIUMF); Dr KALBOUSSI, Yasmine (Institut des lois fondamentales de l'univers, Commissariat de l'énergie atomique-centre de saclay); Ms CURCI, Ivana (Institut des lois fondamentales de l'univers, Commissariat de l'énergie atomique-centre de saclay); Dr PROSLIER, Thomas (Institut des lois fondamentales de l'univers, Commissariat de l'énergie atomique-centre de saclay); DUNSIGER, Sarah (TRIUMF / Simon Fraser University); MACFARLANE, Andrew (UBC Chemistry); Dr MORRIS, Gerald (TRIUMF); LI, Ruohong (TRIUMF); TICKNOR, John O. (Department of Chemistry, University of British Columbia); LAXDAL, Robert (TRIUMF); JUNGINGER, Tobias (University of Victoria)

Presenter: ASADUZZAMAN, Md (University of Victoria, BC, Canada)

Session Classification: Poster session 2

Track Classification: Superconductivity