# 16th International Conference on Muon Spin Rotation, Relaxation and Resonance (µSR2025)



Contribution ID: 123

**Type: Poster Presentation** 

# The Puzzle of the Missing $^8$ Li Signal in LaAlO $_3$ Layers

The perovskite rare-earth R nickelates, RNiO $_3$ , are the prototypical example of a metal-insulator transition in a strongly correlated metal. The transition can be tuned by choice of R, but LaNiO $_3$  remains a metal. In superlattices (SLs) with interlayers of LaAlO $_3$ , LaNiO $_3$  can be driven insulating and antiferromagnetic if they are thin enough [1]. We used  $^8$ Li  $\beta$ -NMR, to study LaNiO $_3$  as a single crystal, thin film, and in SLs with LaAlO $_3$  [2,3]. In the SLs, we are unable to isolate the signal from  $^8$ Li in the LaAlO $_3$  layers. To unravel this mystery, we compare spin-lattice relaxation and frequency comb measurements in a LaAlO $_3$ /LaNiO $_3$  bilayer, and LaNiO $_3$  and LaAlO $_3$  crystals.

In a frequency comb, four frequencies simultaneously irradiate all four quadrupole satellites. The comb spectra of  $LaNiO_3$  and  $LaAlO_3$  are distinct, with the former having a single peak close to zero, while the latter has large quadrupolar splitting and a pattern consistent with its rhombohedral distortion. The comb of the bilayer shows features of both. Interestingly, we observe a significant signal from  $LaNiO_3$ , even at an implantation energy where we expect the  $^8Li$  to be mostly in  $LaAlO_3$ . The spin-lattice relaxation measurements in the bilayer show no evidence of a non-relaxing component.

- 1. A. V. Boris et al., Science 332, 937 (2011)
- 2. V. L. Karner et al., Phys. Rev. B 100, 165109 (2019)
- 3. V. L. Karner et al., Phys. Rev. B. 104, 205114 (2021)

#### **Email**

vkarner@alumni.uwo.ca

#### **Funding Agency**

NSERC

## **Supervisors Name**

W. Andrew MacFarlane

#### **Supervisors Email**

wam@chem.ubc.ca

## Did you request an Invitation Letter for a Visitors Visa Application

No

**Primary authors:** KARNER, Victoria; THOENG, Edward (TRIUMF); CRISTIANI, Georg (MPI-FKF); Dr MORRIS, Gerald (TRIUMF); TICKNOR, John O. (Department of Chemistry, University of British Columbia); STACHURA, Monika (TRIUMF); KIEFL, Rob Kiefl (TRIUMF and UBC); LI, Ruohong (TRIUMF); Dr MCFADDEN, Ryan (TRIUMF Inc.); DUNSIGER, Sarah (TRIUMF / Simon Fraser University); MACFARLANE, Andrew (UBC Chemistry)

**Presenter:** MACFARLANE, Andrew (UBC Chemistry)

**Session Classification:** Poster session 2

Track Classification: Thin films, surfaces and interfaces