16th International Conference on Muon Spin Rotation, Relaxation and Resonance (µSR2025)

Contribution ID: 134

Type: Oral invited talk. This category is for invited speakers only.

I-1 Chiral Phonons: Phonon Angular Momentum and Intrinsic Magnetism

Thursday, 24 July 2025 13:10 (30 minutes)

Chirality —the geometric property defining the handedness of an object —is a fundamental concept with broad relevance across scientific disciplines. Recent advances have highlighted the pivotal role of chirality in condensed matter physics, particularly through the emergence of chiral phonons: vibrational excitations that carry angular momentum. These quasiparticles are of great interest due to their intrinsic magnetism, which enables non-trivial coupling between lattice vibrations and spin degrees of freedom in solids.

In this presentation, I will show our recent work demonstrating the existence of chiral phonons in non-centrosymmetric crystals, using resonant inelastic X-ray scattering (RIXS) as a probing technique [1,2]. By exploiting the angular momentum transfer between circularly polarized X-ray photons and chiral phonons, we uncover the selection rule that enables the observation of circular contrast in phonon excitation spectra, which is a clear signature of chiral phonons. I will also outline our ongoing efforts to directly detect and characterize the intrinsic magnetism associated with these chiral lattice excitations.

[1]	Η.	Ueda	et al.,	Nature	618,	946-950	(2023))
-----	----	------	---------	--------	------	---------	--------	---

[2] H. Ueda et al., arXiv 2504.03330.

Email

hiroki.ueda@psi.ch

Funding Agency

Supervisors Name

Supervisors Email

Did you request an Invitation Letter for a Visitors Visa Application

No

Primary author: UEDA, Hiroki (Paul Scherrer Institute)

Presenter: UEDA, Hiroki (Paul Scherrer Institute) **Session Classification:** Invited Contributions

Track Classification: Magnetism