

Radioactive Molecules

Stephan Malbrunot-Ettenauer TRIUMF, University of Toronto

PSD BAE Retreat 2024

Discovery, accelerate

'Designer Molecules'

RadMol

a radioactive molecule lab for fundamental physics

Goal:

dedicated laboratory to study of radioactive molecules

3

- to host 3 experimental stations
- precision studies for searches for new physics
- Molecular EDM with unprecedented sensitivity to nuclear T-breaking Schiff moments
- provision for expansions into other fields

TRIUMF advantages:

- large variety in radioactive ion beams (RIB)
- high beamtime availability (3 independent RIBs)
- existing laboratory space for large, multi-station program

Current Canadian Team:

12 faculty and staff physicists

'Designer Molecules'

... for searches for time-reversal violation in atomic nuclei

¹⁹⁹Hg present 'gold standard' for limit on nuclear Schiff moment

Enhancement factors in our approach:

- octupole deformed nuclide x 100-1,000
 in polar molecule x 1,000-10,000
 compared to ¹⁹⁹Hg

4

• in atom on ion trap x 1,000 compared to beam experiments

all known cases in radionuclides

'Designer Molecules'

... for searches for time-reversal violation in atomic nuclei

¹⁹⁹Hg present 'gold standard' for limit on nuclear Schiff moment

Enhancement factors in our approach:

- octupole deformed nuclide x 100-1,000
 in polar molecule x 1,000-10,000

compared to ¹⁹⁹Hg

• in atom or ion trap x 1,000 compared to beam experiments

all known cases in radionuclides

Example: ²²³FrAg

intrinsic enhancement of 10⁷ compared to ¹⁹⁹Hg

V. V. Flambaum and V. A. Dzuba. Phys. Rev. A 101, 042504 (2020) T. Fleig. private communications with D. DeMille (2022)

- need to be produced at TRIUMF
 - ➡ challenge: reduced availability
- anticipated gain: x 1,000 for certain CPV-parameters (comp to ¹⁹⁹Hg)

Multidisciplinary

5

General theme for experiments:

translate high-precision AMO techniques into accelerator lab

RadMol collaboration

Institution	Department	Principal Investigators
TRIUMF	Physical Sciences	Behr, Holt, Malbrunot-Ettenauer, Kwiatkowski, Teigelhöfer
	Accelerator Division	Babcock, Charles
	Life Sciences Division	Radchenko
University of British Columbia	Physics&Astronomy	Madison
	Chemistry	Momose, Krems
University of Toronto	Physics	Vutha
University of Waterloo	Physics&Astronomy	Jamison
University of Manitoba	Physics&Astronomy	Gwinner
McGill University	Physics	Buchinger
University of Ottawa	Physics	Stolow
University of Chicago / USA	Physics	DeMille
University of Colorado, Boulder / USA	Physics	Cornell
University of Edinburgh	Physics&Astronomy	Reiter
University of Groningen / NL	Physics	Borschevsky, Hoekstra
Harvard University	Physics	Fan
Johns Hopkins University/USA	Chemistry	Cheng
Massachusetts Institute of	Physics	Garcia Ruiz
Technology / USA	Dhusies	0
University of Maryland / USA	Physics	Urozco
University of Marburg / GER	Chemistry	Berger
Temple University / USA	Physics	Kotochigova

223FrAg experiment

- Ied by Chicago (DeMille)
- benefits from Fr trapping knowhow at TRIUMF/Manitobo
- obtained 2.8 MUSD grant by Moore foundation (ca. 400 kCAD directly to TRIUMF)
- ²²³Fr's half-life 23 min: high-intensity online access + low-intensity offline source (²²⁷Ac)

227ThF+ experiment

experimental EDM techniques analogous to JILA electron EDM experiment

- molecular structure of ²³²ThF⁺ known from spectroscopy at JILA
- access to ²²⁷Th via ²²⁷Ac sample from life sciences ⇒ strong inter-divisional effort (Accelerator, Life Sciences, Physical Sciences)

227ThF+ experiment

experimental EDM techniques analogous to JILA electron EDM experiment

- molecular structure of ²³²ThF⁺ known from spectroscopy at JILA
- access to ²²⁷Th via ²²⁷Ac sample from life sciences ⇒ strong inter-divisional effort (Accelerator, Life Sciences, Physical Sciences)

1st step: laser spectroscopy of ²²⁷Th⁺

Goal: measure nuclear spin & magnetic moment of ²²⁷Th⁺

Challenge: Th beams at ISAC (and globally)

Solution: ²²⁷Ac sample in Life Sciences: generator of ²²⁷Th via chemical separation

- form 'offline' beam in ISAC target
- mass separation in ISAC magnetic mass separator
- Iaser spectroscopy in polarizer line (using TITAN buncher)

Competition on ²²⁷**Th**⁺**: •** TRIUMF has leading edge

others will follow, e.g. Pa LOI at ISOLDE on similar concept

1st step: laser spectroscopy of ²²⁷Th⁺

Goal: measure nuclear spin & magnetic moment of ²²⁷Th⁺

9

Challenge: Th beams at ISAC (and globally)

 Solution: • ²²⁷Ac sample in Life Sciences: generator of ²²⁷Th via chemical separation
 • form 'offline' beam in ISAC target
 • mass separation in ISAC magnetic mass separator
 • laser spectroscopy in polarizer line (using TITAN buncher)
 Vision for future RadMol laboratory: Infrastructure for chemical and mass separation for fundamental physics and medical isotope research
 Competition on ²²⁷Th⁺: • TRIUMF has leading edge
 • others will follow, e.g. Pa LOI at ISOLDE on similar concept

why 2 experiments?

2 complementary techniques: neutral atoms singly charged ions

- different systematics
- different sensitivity to underlying physics

- TRIUMF's attractiveness to this new, emerging field
 - beam availability & strong beams (for Fr) or unique sample (for Th)
 - in-house expertise in sample and beam preparations
 - existing expertise (FrPNC, TRINAT, TITAN, laser, target and ion sources)
 - \rightarrow existing laboratory space \Rightarrow experimental work has already started

<u>S2068LOI - S2171LOI S2279LOI - S2309 -</u>

■ FrAg apparatus: unique approach ⇔ ThF⁺ apparatus: 'universal' spectroscopy setup

spectroscopy of other ionic molecules

11

Examples for other radioactive molecules:

First step to spectroscopy: Molecular Formation / Present

spectroscopy of other ionic molecules

Examples for other radioactive molecules:

RaOCH	1 3 ⁺	Fan et al., Phys. Rev. Lett. 126, 023002 (2021) Yu and Hutzler, Phys. Rev. Lett. 126, 023003 (2021)	PaF ³⁺	C. Zülch e	et al., arXiv:2203.10333 (2022)
AcO+	Flam	baum and V. A. Dzuba, Phys. Rev. A 101, 042504 (2020)	CeF ⁺² ,	AcF+	R. Berger, private communications

First step to spectroscopy: Molecular Formation / Future

Dedicated Ion Reaction Cell (led by C. Charles)

Provisions for future experiments

Nuclear Anapole Moments

Spectroscopy of ultra-cold radioactive molecules

Quantum chemistry

13

- Astrophysics
- BSM physics

university of groningen

Laboratory Layout

Renovation of existing laboratory space

FrAg laboratory

Ground floor

Second Floor

New ISAC II extension building

CHER OLDER TO EDWIPSON

New ISAC II extension building

CHER Stoffen TO ESTAPSON

New ISAC II extension building

budget

Infrastructure or equipment	Costs
requested	[\$MCAD]
renovation of laboratory space	1.2
building extension	10.8
RIB beam-lines	2.5
Ion Reaction Cell & integration	0.5
Experimental Apparatus - ²²³ FrAg	3.2
Experimental Apparatus - ²²⁷ ThF+	2.8
TOTAL	21.0

$[$MCAD] \ge = 12 MC$,AD
CFI envelope ↑↑↑	
UBC 4.0	
University of Toronto 3.5	
University of Waterloo 0.4	
University of Manitoba 0.5	
Provincial contributions	
BC 4.0	
Ontario 3.9	
Manitoba 0.5	
Other	
TRIUMF 4.0	
Vendor Discounts 0.2	
TOTAL 21.0	

Consequences of staging CFI proposal

Scenario A: full proposal

- Ieading Schiff moment experiments at TRIUMF
- attract leading AMO scientists in EDM searches, ion reaction cell

20

- clear vision for expansion into wider program beamline for new RFQ accelerator in ISAC-II
- cement TRIUMF as <u>the</u> place for radioactive molecules
- required TRIUMF investment: 4 MCAD

Scenario B: renovation + ThF⁺ + FrAg

- required TRIUMF investment: 1.2 MCAD
- Synergy in source development between ThF⁺ and FrAg (both ²²⁷Ac based)
- ThF⁺ in full science program, but no general spectroscopy program
- FrAg only with offline source: why at TRIUMF?
- prospect for later online beam: earliest in 2032 \Rightarrow not compatible with AMO schedules
- Limited mutual benefits across divisions (while collaboration remains essential)

Scenario C: 1/2 renovation + ThF+

- required TRIUMF investment: 0.6 MCAD (?)
- only ThF+ in full science program, but no general spectroscopy program
- Ioss of major collaborators including UBC
- difficult to argue why UBC is CFI lead

Summary

Radioactive Molecules

- entirely new science path
- intriguing & unexplored probes for New Ph Jeics

RadMol

Collaboration Partners:

UNIVERSITY OF

- dedicated laboratory for radioactive molecules & precision studies at TRIUMF
- initial focus: CP-violating nuclear Schiff moments
- requires multidisciplinary approach & technical developments
- strong benefits for collaboration across divisions
- attract leading AMO scientists to TRIUMF
- TRIUMF is place of choice (if we proceed full scale now)

RadMol Collaboration:

% TRIUMF

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

