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Precision measurements and 
open data at future colliders

Do recent developments in AI change the picture?
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Particle physics measurements 
• Two main classes of experimental analyses 

• Searches 
• Measurements - focus of this talk
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arXiv:1207.7214 

ATLAS-CONF-2016-067 

https://arxiv.org/abs/1207.7214
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Example of a ‘present day’ measurement 
• Measurement of electroweak Zjj production 

• Probes gauge boson self-interaction via triple gauge vertex  
• Sensitive to CP asymmetry  

• Final state: Z boson and two forward jets 
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Key output of many precision measurements  
Binned differential spectra at particle level 
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Precision measurements
• For a measurement to be useful, it needs a precise definition  
• Standard: define measurement at the stable particle level 

• Real particles with life time  mm ( , , , , ,  …)c τ0 > 10 π± p n K e− e+

5

Quarks/gluons don’t exist 
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Cannot be observed

Final state! 
Observable in nature 

“What a perfect  
detector would see”

Reconstructed level 

What we measure  
in the detector
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Science at work
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Prediction Measurement

Experimentalists Theorists 

Hypothesis test!
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Prediction Measurement

Experimentalists Theorists 

Hypothesis test!Example workflow 
1. UFO module  MadGraph5 
2. Generte events with parton shower 

and hadronization (e.g. MG5+Py8) 
3. Feed to Rivet

→
Example workflow 
0. (Build detector, operate, calibrate) 
1. Event reconstruction+analysis 
2. Correct for detector effects 
3. Make data public 



Science at work

6

Prediction Measurement

Experimentalists Theorists 

Hypothesis test!Example workflow 
1. UFO module  MadGraph5 
2. Generte events with parton shower 

and hadronization (e.g. MG5+Py8) 
3. Feed to Rivet

→
Example workflow 
0. (Build detector, operate, calibrate) 
1. Event reconstruction+analysis 
2. Correct for detector effects 
3. Make data public 

Rivet

https://rivet.hepforge.org/analyses/ATLAS_2020_I1803608


Science at work

6

Prediction Measurement

Experimentalists Theorists 

Hypothesis test!Example workflow 
1. UFO module  MadGraph5 
2. Generte events with parton shower 

and hadronization (e.g. MG5+Py8) 
3. Feed to Rivet

→
Example workflow 
0. (Build detector, operate, calibrate) 
1. Event reconstruction+analysis 
2. Correct for detector effects 
3. Make data public 

Rivet

https://rivet.hepforge.org/analyses/ATLAS_2020_I1803608


ATLAS public page, EPJC 81 (2021) 163 

Useful tools at hand
• HepData stores the measurements with associated uncertainties 

• hepdata.net 
• Rivet is synchronized with the HepData entry 

• Ensures predictions defined in accordance with the data
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-27/
https://www.hepdata.net/
https://arxiv.org/abs/2006.15458
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Limitations with current approach
• As we have seen, current approach for precision measurements is quite nice 
• However there are several short-comings  
• When designing our measurement, we need to a-priori settle on 

A. Exact list of observables to measure 
B. Bin-boundaries for each measurement 
C. We are limited to measure one (or a few) observables at the time 
D. Physics analyses are very much internal to the experiment and take very long time; 

Paper + analysis contain 

8

Recent developments in machine learning opens up new possibilities  
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Recent developments in machine learning opens up new possibilities  

Unbinned 
User can combine measured variables   

High dimensionality 



Precision measurements: The current approach
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Public results (‘open data’)

• Experimental work 
• Data collection 
• Event reconstruction & calibration 
• Detector simulation 
• Unfolding: correction for detector effects 

• Interpretation  
• Extraction of parameters (mass, , PDF) 
• Obtaining/producing state-of-the art 

theory predictions 
• Comparison with the state-of-art theory 
• Limit setting (e.g. EFT models)

αS

Binned spectra in plots + HepData

Measured value (with uncertainty)

Plots / tables with limits on Wilson 
coefficients or similar

Precision measurements are a lot of work! 
Usually takes many years to complete  big paper 
During these years, analysis is internal to experiment 
(‘closed data’)

→ For scientific community can use and analyze

Experiment (ATLAS, CMS, )…



Open data
• Key results from precision measurements are typically presented in HepData 

• Differential and fiducial cross sections with fixed binning and covariance  
• Other measured quantities with uncertainties 

• Event datasets are rarely made public 
• Actual data events are very easy to use for non-expert as they contain: 

• Noise & pileup & sometimes dead detector regions 
• ‘Kinks’ due to bin-edges in calibration functions 
• Mis-reconstructed or mis-identified objects 
• Detector inefficiencies, which are very different depending on the object 

• These effects depend heavily on the detector (ATLAS  CMS  LHCb)≠ ≠

10

Particle level

Detector level

Good! 
But sparse ‘data’

Not so good … 
Error prone



Precision measurements: Future approach(?)
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Experiment (ATLAS, CMS, )… Public results (‘open data’)

• Experimental work 
• Data collection 
• Event reconstruction & calibration 
• Detector simulation 
• ML-based unfolding:  

correction for detector effects

Unbinned dataset at particle level

Less work than current approach. 
Only experimental  paper  
Still internal to experiment 
(Curate data) 

→

E.g. a  measurement could contain 
a full (M) event dataset with many variables 
+ systematic uncertainties 
GB-sized public files

Zjj → μμjj
𝒪

Note: Detector is taken out, so can 
 directly compare ATLAS and CMS 
 easily produce & check vs new predictions

→
→
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• Interpretation  
• Extraction of parameters (mass, , PDF) 
• Obtaining/producing state-of-the art theory predictions 
• Comparison with the data 
• Limit setting (e.g. EFT models)

αS

Physics interpretation 
 happens in the open 
 new paper(s), new group(s) 
 e.g. experimentalists+theorists 
 very easy to reproduce

→
→
→
→



Modern ML method for unbinned measurements

• New possibilities have opened up with the advanced of ML 

• A lot of interest from the particle physics community — also from the precision community 

• Several proofs of principle papers released that take two main approaches 

12

Discriminative models 
‘Density reweighing’ 

Publish MC events with weights to match data 

Example the OmniFold method. 
Already used for real measurement: 

H1 
ATLAS 

CMS 
LHCb

Generative models 
‘Density reweighing’ 

Publish ‘data events width widths’ 

Not used for real data yet (as far as I know)

Note: only the ATLAS measurement (Laura 
Miller’s PhD) has released the unpinned data to 
the public. The other only use method as internal 
stepping stone.

https://arxiv.org/abs/2212.08674


Principle of generative models

13

Observable x
Single data eventSingle data eventSingle data event

Example paper — proof of principle with MC 
arXiv:2212.08674 

Only one observables shown, but this 
happens for many at the same time

https://arxiv.org/abs/2212.08674
https://arxiv.org/abs/2212.08674
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Principle of generative models

13

Observable x
Single data eventSingle data eventSingle data event

Probabilistic 
resampling assigning 
‘width’ to data event, 

undoing detector effects

Overal efficiency 
correction

‘Uncertainty’ 

Example paper — proof of principle with MC 
arXiv:2212.08674 

Only one observables shown, but this 
happens for many at the same time

Hence, each observed data event generates collection of new events that gives it a multidimensional width.  
1 data even  ~100 published events 
1M data events  ~100M published events + more for other uncertainties 
Plotting an observable for all events will give a differential cross section.

→
→

https://arxiv.org/abs/2212.08674
https://arxiv.org/abs/2212.08674


Principle of discriminative approach 
aka density reweighing

14Mariel Pettee
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“Likelihood ratio” 

Q: How can we adjust one distribution to look like another? 
A: Learn a reweighting function based on the ratio of their probability densities. 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Q: How can we adjust one distribution to look like another? 
A: Learn a reweighting function based on the ratio of their probability densities. 



Principle of discriminative approach 
aka density reweighing
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How do we use NNs to learn the likelihood ratio? 
It’s actually quite straight forward … 

We can train a classifier  and use the it for this. 

For NNs, need to use the cross entropy as loss function such that the NN output 
(= the classification score score ) has the right meaning

f( ⃗x)

f( ⃗x)

Using cross entropy as loss function, finds  that maximizes: 

 

f( ⃗x)

∑
sig

wi ln( f( ⃗xi)) + ∑
bkg

wi ln(1 − f( ⃗xi))
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Using cross entropy as loss function, finds  that maximizes: 

 

f( ⃗x)

∑
sig

wi ln( f( ⃗xi)) + ∑
bkg

wi ln(1 − f( ⃗xi))

Then the NN output with approximate the ‘purity’: 

 f( ⃗x) ≈ ps( ⃗x)
ps( ⃗x) + pb( ⃗x)

The likelihood ratio (density reweighs): 

 
ps( ⃗x)
pb( ⃗x) ≈ f( ⃗x)

1 − f( ⃗x)



• Consider two MC samples of the same process 
• One fancy MC that takes a lot of computer resources (‘signal’) 
• One simple MC, that is very fast to generate ‘background’ 

•  Next, we train a ML to separate the two using, say 8 input variables ⃗x = (x1, …, x8)

Using ML to reweight event samples

18

A neural network trained with cross entropy as loss 
function will return  , that estimates the purity. 

An estimate of the likelihood ratio is given by 
fNN( ⃗x)

̂λ( ⃗x) = fNN( ⃗x)
1 − fNN( ⃗x)

fNN fNN/(1 − fNN)



• Consider two MC samples of the same process 
• One fancy MC that takes a lot of computer resources (‘signal’) 
• One simple MC, that is very fast to generate ‘background’ 

•  Next, we train a ML to separate the two using, say 8 input variables ⃗x = (x1, …, x8)

Using ML to reweight event samples

18

A neural network trained with cross entropy as loss 
function will return  , that estimates the purity. 

An estimate of the likelihood ratio is given by 
fNN( ⃗x)

̂λ( ⃗x) = fNN( ⃗x)
1 − fNN( ⃗x)

fNN fNN/(1 − fNN)

We can use this quantity as a per-event weight to the 
cheap MC to make it agree with the fancy one! 

 
The NN  an 8-dimensional reweighing function

w( ⃗x) = fNN( ⃗x)/1 − fNN( ⃗x)
→



The OmniFold method

19Mariel Pettee

arXiv:1911.09107 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2020-17/
https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/1911.09107


Concrete example

20

25

26

The 24 observables describe Z+jets kinematics & properties of jet substructure.  
 (Ultimately, our goal is to enable high-dimensional precision QCD studies.) 

○ Leading & sub-leading jet: pT, y, ɸ, τ1, τ2, τ3, m, ncharged tracks 
○ Leading & sub-leading muon: pT, η, ɸ 
○ Di-muon system: pT, y 

Process:  
24 observables measured simultaneously: 

Z + jets → μμ + jets

arXiv:2405.20041

Laura Miller's PhD topic

https://arxiv.org/abs/2405.20041
https://arxiv.org/abs/2405.20041
https://cds.cern.ch/record/2872436


The measurement — pubic data
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27

Nominal event dataset

42
0k

 e
ve

nt
s

24 observables 
(at particle level)

One nominal weight 
Lots of alternative weights encoding uncertainty 
Unit of weight is fb.

Concrete example

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024
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The measurement is a 24-dimensional object.  
Let’s check out two examples of measured differential cross-sections: 

 
Dilepton pT 

Plotting one variable
Concrete example

Note: these plots are made 
interactively in a Jupyter Notebook 

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024/-/blob/master/3_results.ipynb?ref_type=heads
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The measurement is a 24-dimensional object.  
Let’s check out two examples of measured differential cross-sections: 

 
Leading jet mass 

23

Plotting one variable
Concrete example

Note: these plots are made 
interactively in a Jupyter Notebook 

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024/-/blob/master/3_results.ipynb?ref_type=heads
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But we can go beyond just measuring the 24 input variables… 
 we can also imagine brand new observables that we want to measure,  

and even probe different bins or regions of phase space. 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Let’s construct some new observables… 

This ratio of two parameters measuring jet substructure 
is useful for e.g. W vs. QCD jet classification: 

Images from J. Thaler’s talk and paper from 2011  Mariel Pettee



26Mariel Pettee
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Let’s construct some new observables…  IRC-safe phase space! 

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024/-/blob/master/3_results.ipynb?ref_type=heads


27Mariel Pettee
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Let’s construct some new observables… 

Average mj1 in bins of leading jet pT

Note: neither of these were ‘directly measured’ 
Created ‘on-the-fly’ using the public measurement (i.e. the public event dataset)

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024/-/blob/master/3_results.ipynb?ref_type=heads


Public dataset

2835

Our measurements are published here on Zenodo: https://zenodo.org/records/11507450  

https://zenodo.org/records/11507450 

https://zenodo.org/records/11507450
https://zenodo.org/records/11507450


User guide and example analysis code

29

36

We have also published a detailed README & several Jupyter notebooks  
with instructions about how to use the public datasets: 

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024 

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024


User guide and example analysis code
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https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024


User guide and example analysis code

3138

Look at closure of pseudo-data with the known targets:  Calculate p-values: 

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024/-/blob/master/2_pseudo_results.ipynb?ref_type=heads


User guide and example analysis code

32
39

Reproduce the unfolding result and calculate uncertainties: 

Construct derived variables: 

Plot uncertainty correlation matrices: 

arXiv:2405.20041

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024/-/blob/master/3_results.ipynb?ref_type=heads
https://arxiv.org/abs/2405.20041


• A bunch of challenges were faced and overcome 
• Network gets confused by discontinuity in . It assumes smooth functions. 

Solved by letting network used  and . 
• Insufficient support across full phase space 

• If we have regions of phase space with too few initial MC events,  
need ‘infinite weight’ 

 easily spotted, check for large weights.  
Solved by using MC with decent prediction of data  

• Instabilities of the network 
• Networks (Keras Tensorflow) initialized with random seed.  

Quickly finds solution. But different dep. on seed  
 per-event instabilities 

• Hyperparameter optimization, and ensembling (add computing power …) 
• ‘New type of uncertainty’

ϕ
sin(ϕ) cos(ϕ)

→

→

Shortcomings and challenges

33

Poor/no support 
Weight → ∞



• Background subtraction: 
• Thus far measurements only done for which backgrounds are small 
• ATLAS: Z+jet (  bkg <1%) 
• CMS: inelastic QCD (no background) 

• Several approaches to subtract backgrounds suggested, but not tested for a real analysis when 
backgrounds are signficant 
• Fun problem to try to solve! 

• Example: , big backgrounds, but can get decent precision 
• Low statistics measurements, e.g.  

• Should work ‘out-of-the-box’ but data statistical uncertainties will be significant, and might 
need special treatment (Poisson uncertainties with low mean) 

• Complex final states, with poor resolution objects have not been validated yet 
• Neutral hadrons

tt̄

H → γγ
H → 4ℓ

Shortcomings and challenges

34



• UNIFOLD 
• Measure only one variable at the time.  
• Unbinned version of Iterative Bayesian Unfolding 

• MULTIFOLD 
• Measure a fixed set of variables simultaneously and unbinned 

• E.g.  , , , , ,   

• Note can construct measurements of other observables afterwards. e.g.   
• (Full) OMNIFOLD 

• Measure a variable-length set of variables (simultaneously and unbinned) 
• For example, the momenta ( , , ) and type of all particles in an event 

(One event might have 50 particles, another 1200) 
• Can then e.g. build jets with different jet algorithms as specified by user

pℓ1
T pℓ2

T ηℓ2 ηℓ1 pj1
T pj2

T
Δηℓℓ = ηℓ1 − ηℓ2

pT η ϕ

Next steps for OmniFold

35



Analysis in Jupyter notebook 

Unbinned dataset at particle level 

 v1 - Prelim May 2026 
 v2 - Prelim Dec 2026 

 

H → 4ℓ
H → 4ℓ

…

Precision measurements: Future approach

36

Experiment (ATLAS, CMS, )… Public results (‘open data’)

• Experimental work 
• Data collection 
• Event reconstruction & calibration 
• Detector simulation 
• ML-based unfolding:  

correction for detector effects

One model: Fast turn-around time 

Scientific community helps with scrutiny 
 feedback to experiment 

Experiment can release new versions of measurement due 
to either issue found or perhaps new improved calibration

→



Equity and education
• Currently, use of data and measurments quite restricted to ‘the privileged few’ 

• “Grad students at a lab” 

• With public data that you can access in interactive Python notebooks, use of data much more 
accessible 

• The new ATLAS measurements can be opened in Google Colab 
 A high school student with a google account and a web browser can access it 
 Make cool plots — corresponding to a true measurement (Naure) — within minutes 
 Interactively change the code, try existing examples 

• Super accessible for anyone, also underprivileged learners 

• Clear use cases in education

→
→
→

37



Summary

38

• Rapid development in machine learning opens up for new possibilities in particle physics 

• One such development highlighted here: simultaneous unfolding of many variables at once 

• Opens up for many future applications 
• Significant more information provided 
• Clear applications to e.g. MC tuning, searches for BSM effects, anomaly detection 

• Provides natural way to make data and physics interception open 
• Increased collaboration within the community (theory+experimentalists) 
• Accessible to physics education and much more inclusive to interested people  

• Challenges and details around validation and guidelines still being worked out 
• Significant interest+involvemnt from precision measurment community  

• Exciting times ahead!

 In the future, we might all do our end-analysis using Jupyter notebooks … 



Backup



44

How can I use OmniFold in my own analysis? 

● We are working to implement OmniFold in RooUnfold.  
○ For most analyses with O(1) observables, this is probably the best way to proceed. 

● We have also released a pip-installable version that scales well to many observables: 
○ pip install omnifold

 

We are continually improving these methods & tools - feedback and collaboration is most welcome! 

Mariel Pettee



Classification
• Most common application of machine learning in particle physics is classification 
• Goal: discriminate ‘signal’ from ‘background’ 

• Example: Detector signals from real electrons vs hadrons/photons

41

Classifier 
f( ⃗x)

PDF for signal 
ps(x)

Background 
pb(x)

PDF: 

∫ p(x) dx = 1

3 real electrons 
(signal)

3 fake electrons 
(background) 
From hadrons,  

photons or noise bursts …
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• Example: Detector signals from real electrons vs hadrons/photons
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Classifier 
f( ⃗x)

PDF for signal 
ps(x)

Background 
pb(x)

PDF: 

∫ p(x) dx = 1

Likelihood ratio:  

λLR = ps(x)
pb(x)

3 real electrons 
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3 fake electrons 
(background) 
From hadrons,  

photons or noise bursts …



The Neyman-Pearson lemma
• The Neyman-Pearson lemma states that the best achievable discriminant will be the 

likelihood ratio  (or any monotonic function of it)λLR
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Purity: f(x) = ps(x)
ps(x) + pb(x)

Many machine learning algorithm returns the purity as output 
It is closely related to the likelihood ratio   

Background 
pb(x)

PDF for signal 
ps(x)



• Consider two MC samples of the same process 
• One fancy MC that takes a lot of computer resources (‘signal’) 
• One simple MC, that is very fast to generate ‘background’ 

•  Next, we train a ML to separate the two using, say 8 input variables ⃗x = (x1, …, x8)

Using ML to reweight event samples
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A neural network trained with cross entropy as loss 
function will return  , that estimates the purity. 

An estimate of the likelihood ratio is given by 
fNN( ⃗x)

̂λ( ⃗x) = fNN( ⃗x)
1 − fNN( ⃗x)

fNN fNN/(1 − fNN)
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A neural network trained with cross entropy as loss 
function will return  , that estimates the purity. 

An estimate of the likelihood ratio is given by 
fNN( ⃗x)

̂λ( ⃗x) = fNN( ⃗x)
1 − fNN( ⃗x)

fNN fNN/(1 − fNN)

We can use this quantity as a per-event weight to the 
cheap MC to make it agree with the fancy one! 

 
The NN  an 8-dimensional reweighing function

w( ⃗x) = fNN( ⃗x)/1 − fNN( ⃗x)
→



Using ML to weight events
• Using ML classification to estimate the likelihood ratio, and use this as a weighting function 

has many relevant applications 
• Early use/adoption were done by researchers at LHCb in 2015 

• In other fields ‘density ratio estimation’ has been used earlier. 
• A few examples of applications in particle physics: 

• Neural networks for full phase-space reweighing and parameter tuning  
https://arxiv.org/abs/1907.08209  

• Neural resample for MC reweighing and uncertainty preservation 
https://arxiv.org/abs/2007.11586 

• Omnifold method to perform unfolded precision measurments … 
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https://arxiv.org/abs/1907.08209
https://arxiv.org/abs/2007.11586


• The Omnifold method uses ML to perform unbinned, high-dimensional measurements 
• This includes unfolding to the particle-level

The Omnifold method
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Z → ee

Interaction with the detector, two major effects 

1. Inefficiencies

Z → ee
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Z → ee

Interaction with the detector, two major effects 

1. Inefficiencies

Z → ee

1. Inefficiencies

Z → ee

2. Det. resolution
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Z → ee Z → ee
Powheg+Py8 Powheg+Py8

Data

1. Train NN with data as 
signal, MC bkg 

Use to reweight!
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2. Each simulated event 
has obtained a weight. 
Propagate this to the 

partilcle level distribution
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Z → ee Z → ee
Powheg+Py8 Powheg+Py8

Data

1. Train NN with data as 
signal, MC bkg 

Use to reweight!

Z → ee

Powheg+Py8, Reweight 1

2. Each simulated event 
has obtained a weight. 
Propagate this to the 

partilcle level distribution

Z → ee

Powheg+Py8

Powheg+Py8, Reweight 1

3. Train a new network 
using using blue as signal, 
red background (MC-MC). 

Use to reweight red!



The Omnifold method
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Powheg+Py8 Powheg+Py8
Data

Z → ee

Powheg+Py8, Reweight 1
Z → ee

Powheg+Py8

Powheg+Py8, Reweight

• This method interactively reweighs distributions: 
• Match data, then update prior (particle-level distribution) 

• Stable solution found after a few iterations (typically 2-5) 
• Identical to Iterative Bayesian Unfolding when binned input is used 



• Method announced 2020 with  
proof-of-principle results based on simulation

The Omnifold method
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• The output is a weighing function that applies to 
simulated events (e.g. Powheg+Pythia)  

• The function takes only particle-level quantities as 
input (no need for detector simulation) 

• Weighing MC events makes them ‘become unfolded 
data’ 



• Procedure is the same, i.e. reweight by , just the length of  varies from 
event to event 

• Possible with particle flow networks 

f( ⃗x)/(1 − f( ⃗x)) ⃗x

Full Omnifold
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Illustration of 
All changed particles 
Produced in high pT  

 eventsZ → μμ



Input and output of the unfolding (1/3)

• When we unfold, we have real data as input and MC simulated input 

• The data only has reconstructed level quantiles, we can write the data as: 

• Each event  contains is defined by a weight  and some variables : 
 

• For data, all weights are unity: .  

• For MC the final weight tells us “the importance of the event” 
•  would mean “equally important as a data event”.  
• We want small MC weights (less than 1) to avoid large MC statistical errors 
• MC can have negative weights corresponding to NLO corrections (negative 

interference)

Xi wi ⃗x
Xi = (wi, ⃗xi)

wi = 1

wi = 1

Data sample: ⃗X reco
data = {X reco

data,1, X reco
data,2, …, X reco

data,Ndata
}

First data event Last data event



Input and output of the unfolding (2/3)

• When we unfold, we have real data as input and MC simulated input 

• For MC, we have both truth and reco information for each event 

• After applying selection, events will be removed:

MC sample:  
 
 

⃗X reco
MC = {X reco

MC,1, X reco
MC,2, …, X reco

MC,NMC
}

⃗X truth
MC = {X truth

MC,1, X truth
MC,2, …, X truth

MC,NMC
}

⃗X reco
MC = {
⃗X truth
MC = {

X reco
MC,1 X reco

MC,2

X truth
MC,1 X truth

MC,2 X truth
MC,3

X reco
MC,4

X truth
MC,4

X reco
MC,6

X truth
MC,5

X reco
MC,7

X truth
MC,7

…, X reco
MC,NMC

}
…, X truth

MC,NMC
}

Detector inefficiencies.  
(Sometimes “misses”) 

About 15% of events do not produce good 
enough quality + isolated muons

“Out-of-fiducial events” or “fakes” 
Events that do not pass the truth fiducial 

selection but pass the event selection.

Factorize: Efficiency correction, fiducial correction + preform unfolding on (truth+reco) subset



Particle flow networks
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