

Top physics at the HL-LHC and beyond

Zhengcheng Tao

Physics Potential of Future Colliders 2024 September 18 - 20, TRIUMF

THE UNIVERSITY **OF BRITISH COLUMBIA**

Outline

- Future facilities
 - HL-LHC
 - e⁺e⁻ colliders

Top mass measurements

- Direct measurement from top decay
- Indirect measurement from top production
- Top pair production threshold scan

Top Flavour Changing Neutral Current

- top-Higgs, top- γ , top-g, top-Z
- Top couplings in the SMEFT framework

HL-LHC

• High Luminosity LHC

- 14 TeV centre-of-mass energy
- Integrated luminosity: 3000~4000 fb⁻¹
- Instantaneous luminosity up to $7.5 imes10^{34}\,
 m cm^{-2}s^{-1}$
 - Average pile-up up to 200

- ATLAS and CMS Phase-2 upgrades
 - Extended angular coverage
 - Increased trigger and readout rate
 - Timing detectors for improved track and vertex reconstruction
 - Improved pile-up mitigation techniques

Future Lepton Colliders

- Circular e⁺e⁻ colliders
 - FCC-ee, CEPC
 - Higher luminosity at low energy
 - High collision rate, multiple interaction points
 - Unpolarized beams
- Linear e⁺e⁻ colliders
 - ILC, CLIC, CCC
 - Luminosity increases as energy increases
 - Lower collision rate, but allow a highgranularity detector with pulsed operations
- Energy recovery e⁺e⁻ colliders (ERLC, ReLiC, **CERC**), muon colliders, wakefield colliders, ...

10³⁷

10³⁶

 $(cm^{-2}s^{-1})$

10³⁴

10³³

The scientific choice is essentially Z-pole vs. energy upgrade, the rest is "just" politics - Marcel Vos @ Top2023

Projections are often conservative

- Example: *tītī*
- ATLAS *tītī* projection (<u>ATL-PHYS-PUB-2022-004</u>) expected 5σ with 1000 fb⁻¹
 - "Run 2 Improved":
 - Some uncertainties reduced by a factor of 2: theory, signal and some backgrounds modelling, jet tagging
 - Some scaled down by luminosity: additional jet modelling, non-prompt lepton
 - Instrumental uncertainties are kept the same
 - Fit on H_T
- ATLAS and CMS already observed $t\bar{t}t\bar{t}$ in 2ISS and 3I channels with the LHC Run 2 data!
 - Improved background estimates
 - More sophisticated signal-background separation using ML techniques

Z. Tao

Top mass @ (HL-)LHC

- **Direct measurement** from top decay
 - Reconstruct top mass from decay products in $t\bar{t}$ or single top events
 - Measure the "MC mass" m_t^{MC}
 - More precise experimentally
 - Subject to additional uncertainty when translating to a theoretically well-defined mass
 - Dominant systematic uncertainties: Jet Energy Scales
 - Constrain from simultaneous fit together with m_t^{MC}
 - Or build top mass sensitive observables without jets
 - lepton + secondary vertex tracks in b-jet
 - lepton + soft $\mu^+\mu^-$ from J/ ψ in B meson (e.g. <u>ATLAS HL-LHC</u> projection)
 - LHC Run 3 and HL-LHC projections based on the CMS analysis
 - Lepton collider projection from top threshold scans (see later slides)

'l'op mass @ (HL-)LHC

- Indirect measurement from top production
 - Extract from total or differential cross-section measurements
 - $t\bar{t}$ or $t\bar{t}$ +jets events usually in the di-leptonic channel
 - Top mass in a well-defined renormalization scheme, e.g. m_{\star}^{pole} , $m_{\star}^{\overline{MS}}$
 - Dominant uncertainty: theory (PDF, α_{s} , QCD scale variations)
 - Can still benefit from better differential cross-section measurements
 - Snowmass 2021 projection for HL-LHC:
 - Combine ATLAS and CMS measurements in $t\bar{t}$ and $t\bar{t}$ +jets
 - Experimental uncertainty: 0.4 GeV
 - Reduce by a factor of 2 from LHC Run 2 to LHC Run 3, and another factor of 2 from Run 3 to HL-LHC
 - Theoretical uncertainty: 0.25 GeV
 - Run 3 same as Run 2; reduce by a factor of 2 at HL-LHC

Z. Tao

Top mass @ Lepton Colliders

- The $t\bar{t}$ production threshold is sensitive to the top mass
 - The threshold mass m_t^{PS}
 - Conversion to $m_t^{\overline{MS}}$ known to $\mathcal{O}(\alpha_s^4)$
 - The peak shape is sensitive to the top width Γ_t
 - The tail is sensitive to top Yukawa y_t , and strong coupling α_s

- The luminosity spectrum affects the threshold curve shape
 - Linear colliders: characterized by a beamstrahlung tail
 - FCC-ee: Gaussian
 - Precise measurement of the luminosity spectrum is required

<u>Seminar talk by Frank Simon</u>

Top mass @ Lepton Colliders

- Threshold scan around 350 GeV
 - Can extract m_t^{PS} with $\Gamma_{t'} y_{t'}$ and α_s from template fits
 - Sizeable contribution from non-resonant backgrounds
 - The leading uncertainties: QCD scales
 - Need NNNLO QCD prediction
- Snowmass 2021 projection <u>arXiv:2209.11267</u>
 - Assumes other parameters $\Gamma_{t'} y_{t'}$ and α_s are fixed
 - Smaller uncertainty on α_s for FCC-ee
 - Thanks to the high-statistics Z-pole run
 - Slightly larger experimental uncertainty for ILC/CLIC due to more complex luminosity spectrum shape corrections

<u>Seminar talk by Frank Simon</u>

$\mathcal{L}[ext{fb}^{-1}]$	200	$100 \ [200]$	200	
Statistical uncertainty	atistical uncertainty 10 20			
Theoretical uncertainty (QCD)	40-45			
Parametric uncertainty α_s 26 26 3.				
Parametric uncertainty y_t (HL-LHC)	5			
Non-resonant contributions	< 40			
Experimental systematic uncertainty	y $15 - 30$ $11 - 2$			
Total uncertainty	40 - 75			

Top mass summary

- For comparisons, translate mass measurements and projections all to $m_{
 m t}^{MS}$
- Additional uncertainty assumed when translating: 250~500 MeV from m_t^{MC} and 10~20 MeV from m_t^{PS}

Top FCNC (HL-) LHC

- Probe from top decay
 - From $t\bar{t}$ events in which one top decays as usual (W+b) and the other top decays via the FCNC coupling (t \rightarrow u/c + H/Z/ γ /g)
 - Need charm tagging to differentiate u and c

Probe from top production

- From s- or t-channel single top production $(u/c \rightarrow t + H/Z/\gamma/g)$
- Higher rate for the process initiated from a valance quark (u) than from a sea quark (c)
- Usually limits are set assuming only one FCNC coupling (tuX or tcX) is non-zero at a time

Blue: current ATLAS 95% CL upper limits **Red**: current CMS 95% CL upper limits **Black**: SM prediction

$Top FCNC (\emptyset (HL-)LHC)$

- top-Higgs
 - HL-LHC projection by ATLAS (<u>ATL-PHYS-PUB-2016-019</u>)
 - Via top decay (tHq) $t\bar{t} \rightarrow WbHq$ with $W \rightarrow \ell \nu$ and $H \rightarrow bb$
 - Discriminate the signal and $t\bar{t}$ based on the estimated probability of jet origins (Higgs or W)
 - Systematics extrapolated based on ATLAS 8 TeV estimates
 - LHC Run 2 limits: <u>EPJC 84 (2024) 757</u> (ATLAS), <u>CMS-PAS-</u> <u>TOP-22-002</u> (CMS)
 - Use both tHq and tH events
 - Discriminate signal and backgrounds using DNN or BDT
 - Combining multiple Higgs decay channels
 - $\gamma\gamma/\tau\tau/VV^*$ channels are statistically limited

 Latest LHC Run 2 limits are already close to or better than the projections!

$Top FCNC (\emptyset (HL-)LHC)$

• top- γ

HL-LHC projection by CMS (<u>CMS-TDR-019</u>)

- Use single top production associated with a photon
 - Target leptonic top decay
- Discriminate the signal and backgrounds ($W\gamma$ +jets, SM $t\gamma$, $t\bar{t}\gamma$, mis-identified photons) based on photon p⊤ or energy
- LHC Run 2 limits: <u>PLB 842 (2023) 137379</u> (ATLAS), <u>PRD</u> <u>109 (2024) 072004 (CMS)</u>
 - Use both $t\bar{t}$ and single top events
 - Use DNN or BDT to discriminate signal and backgrounds

 Latest LHC Run 2 limits are already better than the projections!

Top $FCNC(\alpha)(HL-)LHC$

top-g

- LHC Run 2 limits from <u>EPJC 82 (2022) 334</u> (ATLAS), <u>JHEP</u> • <u>02 (2017) 028</u> (CMS)
 - ATLAS targets s-channel single top without extra jets
 - CMS targets t-channel single top production
 - Higher rate, but more similar to SM single top
 - Both use NN to discriminate signal and backgrounds

• **HL-LHC projection** by CMS (<u>CMS-PAS-FTR-18-004</u>)

- Select t-channel single top events
- Use Bayesian NN for signal-background discrimination
- Systematic uncertainty limited
- Dominant systematics: background cross sections (multi-jet QCD and $t\bar{t}$)

Top $FCNC(\alpha)(HL-)LHC$

- top-Z
 - HL-LHC projection by ATLAS (<u>ATL-PHYS-PUB-2019-001</u>)
 - Target $t\bar{t}$ three lepton final states: $t\bar{t} \rightarrow bWqZ \rightarrow b\ell\nu q\ell\ell$
 - Event reconstruction using a χ^2 kinematic fit
 - Dominant uncertainties: cross-sections and background modelling
 - Reduce by a factor of 2 from the partial Run 2 analysis
 - LHC Run 2 limits: <u>PRD 108 (2023) 032019</u> (ATLAS), <u>CMS-PAS-</u> <u>TOP-17-017, JHEP 07 (2017) 003</u> (CMS)
 - Two signal regions dedicated for $t\bar{t}$ and single top
 - BDTs for signal-background discrimination
 - Statistically limited

(MC statistical uncertainty not considered)

Top FCNC @ Lepton Colliders

- Top FCNC couplings can be probed at a lepton collider below the $t\bar{t}$ threshold
 - Sensitive to **top-Z** and **top-**γ couplings
 - $e^+e^- \rightarrow Z/\gamma \rightarrow t + u/c$
 - Top physics already at 240 GeV!
- Above $t\bar{t}$ threshold, can also probe via top decay
 - Fewer events compared to HL-LHC but cleaner
- Complementary to the hadron collider search and also competitive results:
 - Order of 10^{-5} limit on top-Z/ γ BR (<u>FCC-ee</u>) Snowmass 2021 report)
- Global fit on FCNC EFT operators benefits greatly from the clean final states at lepton colliders

SMEFT Operators relevant to top

	·				4
	Coefficient	Operator	Coefficient	Operator	
	$C^1_{arphi Q}$	$\left(ar{Q}\gamma^{\mu}Q ight)\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi ight)$	$C^3_{arphi Q}$	$\left(ar{Q} au^{I} \gamma^{\mu} Q ight) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi ight)$	$C^{-}_{\varphi Q} = C^{1}_{\varphi Q} - C^{3}_{\varphi Q}$
2-auark	$C_{arphi t}$	$(\bar{t}\gamma^{\mu}t)\left(\dot{\varphi}^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi ight) ight)$	$C_{arphi b}$	$\left(\overline{b}\gamma^{\mu}b ight)\left(ec{arphi^{\dagger}}ec{D}_{\mu}arphi ight) ight)$	
2 quair	C_{tarphi}	$\left(ar{Q}t ight)\left(ar{\epsilon}arphi^{*}arphi^{\dagger}arphi ight)$	C_{tG}	$\left(\bar{t}\sigma^{\mu u}T^{A}t\right)\left(\epsilon\varphi^{*}G^{A}_{\mu u} ight)$	$C_{tZ} = c_W C_{tW} - s_W C_{tB}$
	C_{tW}	$\left(\bar{Q} \tau^{I} \sigma^{\mu \nu} t \right) \left(\epsilon \varphi^{*} W^{I}_{\mu \nu} \right)$	C_{tB}	$\left(ar{Q} \sigma^{\mu u} t ight) (\epsilon arphi^* B_{\mu u})$	
1	$C_{qq}^{1(ijkl)}$	$(ar{q}_i\gamma^\mu q_j)(ar{q}_k\gamma_\mu q_l)$	$C_{qq}^{3(ijkl)}$	$(ar{q}_i au^I \gamma^\mu q_j) (ar{q}_k au^I \gamma_\mu q_l)$	
4-quark	$C_{uu}^{(ijkl)}$	$(ar{u}_i\gamma^\mu u_j)(ar{u}_k\gamma_\mu u_l)$	$C_{ud}^{8(ijkl)}$	$(ar{u}_i\gamma^\mu T^A u_j)(ar{d}_k\gamma_\mu T^A d_l)$	
	$C_{qu}^{8(ijkl)}$	$(\bar{q}_i\gamma^\mu T^A q_j)(\bar{u}_k\gamma_\mu T^A u_l)$	$C_{qd}^{8(ijkl)}$	$(ar{q}_i \gamma^\mu T^A q_j) (ar{d}_k \gamma_\mu T^A d_l)$	
	C^1_{lQ}	$\left(ar{Q}\gamma_{\mu}Q ight)\left(ar{l}\gamma^{\mu}l ight)$	C_{lQ}^3	$\left(ar{Q} au^{I}\gamma_{\mu}Q ight)\left(ar{l} au^{I}\gamma^{\mu}l ight)$	$C_{10}^{+} = C_{10}^{1} + C_{10}^{3}$
2-quark	C_{lt}	$(ar{t}\gamma_\mu t)\left(ar{l}\gamma^\mu l ight)$	C_{lb}	$\left(ar{b} \gamma_{\mu} b ight) \left(ar{l} \gamma^{\mu} l ight)$	$\begin{bmatrix} iQ & iQ & iQ \\ -1 & -1 & -2 \end{bmatrix}$
2-lenton	C_{eQ}	$\left(ar{Q}\gamma_{\mu}Q ight)\left(ar{e}\gamma^{\mu}e ight)$	C_{et}	$(ar{t}\gamma_\mu t)(ar{e}\gamma^\mu e)$	$C_{lQ}^{-} = C_{lQ}^{-} - C_{lQ}^{-}$
	C_{eb}	$\left(ar{b} \gamma_\mu b ight) \left(ar{e} \gamma^\mu e ight)$	_	_	

2024/09/18

arXiv:2205.02140

• Some of the coefficients used in the fit are linear combinations of the ones listed below

TOP EFT @ HL-LHC

- Use observables in $t\bar{t}$, single top, top+X measurements from both ATLAS and CMS
 - Most measurements limited by theory and modelling uncertainties
- Project to HL-LHC from LHC
 - Theory and modelling uncertainties reduced by a factor of 2
 - Experimental systematic uncertainties scaled by luminosity: $1/\sqrt{\mathscr{L}}$
 - Improve by a factor of ~3
- Solid bar from the individual fit; shaded from the global fit
 - Worse limit in global fit due to unresolved correlation between WCs

arXiv:2205.02140 and

Z. Tao

Top EFT @ Lepton colliders

- $e^+e^- \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^-$
 - Sensitive to 2-quark and 2-quark 2-lepton WCs
 - Not sensitive to 4-quark operators
- Use statistically optimal observables defined at leading order on the $e^+e^- \rightarrow bW^+\bar{b}W^-$ differential distribution (arXiv:1807.02121)
 - Combine information from σ , A_{FB} , as well as top polarization
- Need two runs at different energies above the *tt* threshold to disentangle the 2-quark WCs and the 2-lepton 2-quark WCs
 - Scale differently with energy

<u>arXiv:1807.02121</u> <u>arXiv:2205.02140</u> <u>Talk by Víctor Miralles @ ICHEP2024</u>

Combine HL-LHC and Lepton Collider

From the talk by Víctor Miralles @ ICHEP2024

- **ILC/CLIC** can set very tight bounds on the 4-fermion operators due to the higher energy reach.

HEPfit Ca $Q_{\ell\ell}$ C1Q

Lepton collider configurations considered

arXiv:2205.02140

Machine	Polarisation	Energy	Luminosity
		$250 { m GeV}$	2 ab^{-1}
ILC	P(e^+ , e^-):($\pm 30\%$, $\mp 80\%$)	$500~{\rm GeV}$	4 ab^{-1}
		$1 { m TeV}$	8 ab^{-1}
		$380~{\rm GeV}$	$1 {\rm ~ab^{-1}}$
CLIC	$P(e^+, e^-)$:(0%, ±80%)	$1.4 { m TeV}$	$2.5 { m ~ab^{-1}}$
		$3 { m TeV}$	5 ab^{-1}
	Unpolarised	Z-pole	150 ab^{-1}
FCC as		$240~{\rm GeV}$	5 ab^{-1}
гос-ее		$350~{\rm GeV}$	$0.2 \ {\rm ab^{-1}}$
		$365~{\rm GeV}$	$1.5 {\rm ~ab^{-1}}$
CEPC		Z-pole	57.5 ab^{-1}
	Unpolarised	$240~{\rm GeV}$	$20 \ {\rm ab^{-1}}$
		$350 { m GeV}$	$0.2 \ {\rm ab^{-1}}$
		$360~{\rm GeV}$	1 ab^{-1}

• FCC-ee/CEPC can constrain 2-fermion operators quite well. Additional runs above the top threshold help to constrain the 4-fermion operators, but still hard to disentangle the 2-fermion and 4-fermion operators.

Summary

- HL-LHC and future lepton colliders provide great opportunities for top physics
- Top mass:
 - Direct measurement of the top mass at the HL-LHC is expected to reach a precision of ~170 MeV
 - Additional ~250 MeV uncertainty when translating to MS mass
 - Indirect measurement via cross-sections is projected to reach a precision of ~500 MeV
 - The $t\bar{t}$ threshold scan at a lepton collider can measure the top mass to a precision of 40~75 MeV

• Top FCNC:

- HL-LHC can set top FCNC branching ratio upper limit to the order of
 - 10-4 for $t \to Hq$; 10-5 for $t \to Zq$; 10-6 (10-5) for $t \to \gamma u (t \to \gamma c)$; 10-6 (10-5) for $t \to gu (t \to gc)$
- Some recent LHC Run 2 analyses already set limits close to or better than the (old) projections
- Lepton colliders can probe top- Z/γ FCNC couplings even before $t\bar{t}$ threshold
- Top EFT:
 - HL-LHC is expected to improve the bounds on 2-fermion and 4-fermion Wilson coefficients by a factor of ~3
 - the $t\bar{t}$ threshold.

• The bounds on 2-quark and 2-lepton 2-quark Wilson coefficients can be further improved at lepton colliders operating at and above

Backup

2024/09/18

22

Top cross-sections

2024/09/18

e+e-

Top mass projection assumptions

• CMS-PAS-FTR-16-006

Table 1: Summary of the systematic uncertainties on m_t for the reference measurement in lepton+jets channel. Experimental uncertainties are separated from theoretical ones.

	Valu			
Source	8 TeV,	14 TeV,	14 TeV	Comment
	$19.7\mathrm{fb}^{-1}$	$0.3\mathrm{ab}^{-1}$	$3 \mathrm{ab}^{-1}$	
Method calibration	± 0.04	± 0.02	± 0.02	MC stat. ×4
Lepton energy scale	+0.01	± 0.01	± 0.01	unchanged
Global JES	± 0.13	± 0.12	± 0.04	3D fit, differential
Flavor-dependent JES	± 0.19	± 0.17	± 0.06	3D fit, differential
Jet energy resolution	-0.03	± 0.02	< 0.01	differential
$E_{\rm T}^{\rm miss}$ scale	+0.04	± 0.04	± 0.04	unchanged
b tagging efficiency	+0.06	± 0.03	± 0.03	improved with data
Pileup	-0.04	± 0.04	± 0.04	unchanged
Backgrounds	+0.03	± 0.01	± 0.01	cross sections
ME generator	-0.12 ± 0.08	-	_	NLO ME generator
Ren. and fact. scales	-0.09 ± 0.07	± 0.06	± 0.06	NLO ME generator,
				MC stat.
ME-PS matching	$+0.03\pm0.07$	± 0.06	± 0.06	MC stat.
Top quark $p_{\rm T}$	+0.02	< 0.01	< 0.01	improved with data
b fragmentation	< 0.01	< 0.01	< 0.01	unchanged
Semileptonic b hadron decays	-0.16	± 0.11	± 0.06	improved with data
Underlying event	$+0.08\pm0.11$	± 0.14	± 0.09	improved with data,
				MC stat.
Color reconnection	$+0.01\pm0.09$	± 0.05	< 0.01	improved with data
PDF	± 0.04	± 0.03	± 0.02	improved with data
Systematic uncertainty	± 0.48	± 0.30	± 0.17	
Statistical uncertainty	± 0.16	± 0.04	± 0.02	
Total	± 0.51	±0.31	± 0.17	

Table 2: Summary of the systematic uncertainties on m_t for the measurements in the single-top quark *t*-channel. Experimental uncertainties are separated from theoretical ones.

	Valu			
Source	8 TeV,	14 TeV,	14 TeV	Comment
	$19.7{ m fb}^{-1}$	$0.3 {\rm ab}^{-1}$	$3 \mathrm{ab}^{-1}$	
Fit Calibration	± 0.38	± 0.15	± 0.15	MC stat. $\times 4$,
				improved method
Lepton energy scale	< 0.05	< 0.05	< 0.05	unchanged
Global JES	+0.55, -0.46	± 0.35	± 0.23	benefits from lepton+jets
Flavor-dependent JES	± 0.40	± 0.28	± 0.19	benefits from lepton+jets
Jet energy resolution	< 0.05	< 0.04	< 0.03	benefits from lepton+jets
$E_{\mathrm{T}}^{\mathrm{miss}}$	± 0.15	± 0.15	± 0.15	unchanged
b tagging efficiency	± 0.10	± 0.08	± 0.05	improved with data
Pileup	± 0.10	± 0.10	± 0.10	unchanged
Backgrounds	± 0.39	± 0.20	± 0.20	cross sections
ME generator	± 0.10	-	-	NLO ME generator
Ren. and fact. scales	± 0.23	± 0.07	± 0.07	MC stat.
b quark hadronization	± 0.14	± 0.10	± 0.06	improved with data
Underlying event	± 0.20	± 0.15	± 0.10	improved with data
Color reconnection	< 0.05	< 0.04	< 0.02	improved with data
PDF	< 0.05	< 0.04	< 0.02	improved with data
Systematic uncertainty	+0.97, -0.93	± 0.59	± 0.45	
Statistical uncertainty	± 0.77	± 0.20	± 0.06	
Total	+1.24, -1.21	±0.62	± 0.45	

24

Top mass projection assumptions (2)

• CMS-PAS-FTR-16-006

Table 3: Summary of the systematic uncertainties on m_t for the measurement from $m_{sv\ell}$. Experimental uncertainties are separated from theoretical ones.

	Valu	ıe (GeV)		
Source	8 TeV,	14 TeV,	14 TeV	Comment
	$19.7\mathrm{fb}^{-1}$	$0.3 { m ab}^{-1}$	$3 \mathrm{ab}^{-1}$	
Lepton energy scale	+0.22, -0.26	±0.26	±0.26	unchanged
Sec. vertex track multiplicity	-0.06	± 0.06	± 0.06	unchanged
Sec. vertex mass modeling	-0.29	± 0.22	± 0.15	upgraded tracker
				and decay tables
Jet energy scale	+0.19, -0.17	± 0.14	± 0.10	benefits from lepton+jets
Jet energy resolution	± 0.05	± 0.05	± 0.05	unchanged
Unclustered energy	+0.07	± 0.07	± 0.07	unchanged
b tagging efficiency	-0.02	± 0.02	± 0.01	improved with data
Pileup	+0.07, -0.05	± 0.07	± 0.07	unchanged
Lepton selection efficiency	+0.01	± 0.01	± 0.01	unchanged
Backgrounds	< 0.03	± 0.01	± 0.01	cross sections
$\sigma(t\bar{t} + heavy flavor)$	+0.46, -0.36	± 0.33	± 0.20	improved with data
ME generator	-0.42	-	_	NLO ME generator
Single t fraction	± 0.07	± 0.06	± 0.06	cross sections
Single t diagram interference	+0.24	± 0.06	< 0.01	NLO ME generator
Ren. and fact. scales	+0.30, -0.20	± 0.10	± 0.10	NLO ME generator
ME-PS matching	+0.06, -0.04	± 0.06	± 0.06	unchanged
Top quark $p_{\rm T}$	+0.82	± 0.14	± 0.14	improved with data
				and NNLO k-factors
Top quark decay width	-0.05	± 0.04	± 0.02	improved with data
b quark fragmentation	+1.00, -0.54	± 0.70	± 0.40	improved with data
Semileptonic B decays	± 0.16	± 0.11	± 0.06	improved with data
b hadron composition	-0.09	± 0.07	± 0.04	improved with data
Underlying event	+0.19	± 0.15	± 0.10	improved with data
Color reconnection	+0.08	± 0.05	± 0.02	improved with data
PDF	+0.06, -0.04	± 0.04	± 0.02	improved with data
Systematic uncertainty	+1.58, -0.97	± 0.95	± 0.62	
Statistical uncertainty	± 0.20	± 0.05	± 0.02	
Total	+1.59, -0.99	±0.95	±0.62	

Table 4: Summary of the systematic uncertainties on m_t for the measurement from $m_{J/\psi+\ell}$. Experimental uncertainties are separated from theoretical ones.

	Valu	ue (GeV)		
Source	8 TeV,	14 TeV,	14 TeV	Comment
	$19.7\mathrm{fb}^{-1}$	$0.3 { m ab}^{-1}$	$3 \mathrm{ab}^{-1}$	
Size of the simulation samples	±0.22	± 0.07	± 0.07	MC stat. ×10
Muon momentum scale	± 0.09	± 0.09	± 0.09	unchanged
Electron momentum scale	± 0.11	± 0.11	± 0.11	unchanged
Modeling of $m_{J/\psi}$	+0.09	< 0.01	< 0.01	constrained J/ ψ vertex fit
Jet energy scale	< 0.01	< 0.01	< 0.01	unchanged
Jet energy resolution	< 0.01	< 0.01	< 0.01	unchanged
Trigger efficiencies	± 0.02	± 0.01	± 0.01	improved method
Pileup	± 0.07	± 0.07	± 0.07	unchanged
Backgrounds	± 0.01	± 0.01	± 0.01	unchanged
ME generator	-0.37	-	-	NLO ME generator
Ren. and fact. scales	+0.12, -0.46	± 0.08	± 0.04	NLO ME generator,
				MC stat.
ME-PS matching	+0.12, -0.58	± 0.50	± 0.43	MC stat.
Top quark $p_{\rm T}$	+0.64	± 0.12	± 0.12	improved with data
				and NNLO k-factors
b quark hadronization	± 0.30	± 0.21	± 0.12	improved with data
Underlying event	± 0.13	± 0.10	± 0.07	improved with data
Color reconnection	+0.12	± 0.09	± 0.06	improved with data
PDF	+0.39, -0.11	± 0.27	± 0.15	improved with data
Systematic uncertainty	+0.89, -0.94	± 0.66	± 0.53	
Statistical uncertainty	± 3.0	± 0.77	± 0.24	
Total	+3.13, -3.14	± 1.00	± 0.58	

25

TTbar Cross-section @ HL-LHC

- A projection of differential $t\bar{t}$ cross-section measurement in the resolved lepton+jets channel by CMS
 - 3 ab-1 @ 14 TeV
 - Phase-2 CMS detector simulated by DELPHES
 - require 4 jets, 2 b-tags, and exactly 1 electron or muon
 - PUPPI algorithm essential for mitigating pileup
 - reconstruct ttbar by kinematic fit
- Projected normalized differential cross-sections:
 - 1D: $p_{T'}$ | y | of individual top; $p_{T'}$ | y | , and m of $t\bar{t}$
 - 2D: $m(t\overline{t}) \lor |y(t\overline{t})|$
- Uncertainties
 - Detector systematics estimated based on simulation: e/mu ID, b-tagging, jet energy scale and resolution, met, luminosity
 - Theoretical and modelling uncertainties are reduced by half wrt the analysis using 2016 LHC data
 - < 5% (10&) uncertainties in most bins in the single (double) differential cross-sections
 - Benefit from the large amount of data and improved jet calibration
- Constrain the gluon distribution in PDF from the double differential cross-sections

CMS-PAS-FTR-18-015

Some top FCNC Feynman diagrams

2024/09/18

W $v_{e}(v_{\mu})$

27

Observables used in EFT fit at LHC

Process	Observable	\sqrt{s}	$L_{ m int}$	Experiment
$pp \rightarrow t\bar{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	CMS
$pp \rightarrow t\bar{t}$	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t \bar{t} H + t H q$	σ	$13 { m TeV}$	$140~{\rm fb^{-1}}$	ATLAS
$pp \rightarrow t\bar{t}Z$	$d\sigma/dp_T^Z$ (7 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \rightarrow t \bar{t} \gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \rightarrow tZq$	σ	$13 { m TeV}$	$77.4 \ {\rm fb}^{-1}$	CMS
$pp \rightarrow t\gamma q$	σ	$13 { m TeV}$	$36 \ {\rm fb^{-1}}$	CMS
$pp \rightarrow t\bar{t}W$	σ	$13 { m TeV}$	$36 \ {\rm fb^{-1}}$	CMS
$pp \to t\bar{b} \text{ (s-ch)}$	σ	8 TeV	$20~{\rm fb^{-1}}$	LHC
$pp \rightarrow tW$	σ	8 TeV	$20~{\rm fb^{-1}}$	LHC
$pp \rightarrow tq \text{ (t-ch)}$	σ	8 TeV	$20~{\rm fb^{-1}}$	LHC
$t \rightarrow Wb$	F_0, F_L	8 TeV	$20~{\rm fb^{-1}}$	LHC
$p\bar{p} \rightarrow t\bar{b} \ (\text{s-ch})$	σ	1.96 TeV	$9.7 {\rm ~fb^{-1}}$	Tevatron
$e^-e^+ \to b \bar{b}$	R_b , A^{bb}_{FBLR}	\sim 91 GeV	$202.1 \ {\rm pb^{-1}}$	LEP/SLD

arXiv.2205.02140

Wilson Coefficients used in fit

Coefficients fitted					
	C_{tG}	$C^3_{arphi Q}$	$C^{\varphi Q} = C^1_{\varphi Q} - C^3_{\varphi Q}$		
2-quark	$C_{arphi t}$	$C_{arphi b}$	$C_{tZ} = c_W C_{tW} - s_W C_{tB}$		
		C_{tarphi}	C_{tW}		
	$C_{tu}^8 = \sum_{i=1,2} 2C_{uu}^{(i33i)}$	$C_{td}^8 = \sum_{i=1,2,3} C_{ud}^{8(33ii)}$	$C_{Qq}^{1,8} = \sum_{i=1,2} C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$		
4-quark	$C_{Qu}^8 = \sum_{i=1,2}^{N} C_{qu}^{8(33ii)}$	$C_{Qd}^8 = \sum_{i=1,2,3} C_{qd}^{8(33ii)}$	$C_{Qq}^{3,8} = \sum_{i=1,2}^{3} C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$		
	<i>i</i> =1,2	<i>i</i> =1,2,5	$C_{tq}^{^{i=1,2}} = \sum_{^{i=1,2}} C_{uq}^{8(ii33)}$		
0 1	C_{eb}	C_{et}	$C_{lQ}^{+} = C_{lQ}^{1} + C_{lQ}^{3}$		
2-quark 2-lepton	C_{lb}	C_{lt}	$C^{lQ} = C^1_{lQ} - C^3_{lQ}$		
- 10p0011			C_{eQ}		

<u>arXiv.2205.02140</u>

