

## DarkLight and the role of small experiments

Laura Miller

Physics Potential of Future Colliders 2024-09-19







### Introduction

- DarkLight@ARIEL is an ongoing experiment based here at TRIUMF
  - Some local flavour!
  - Fixed target experiment installing on the existing e-linac beam line
  - Dark photon search looking for low mass  $e^+e^-$  resonances
- Explore small dark photon experiments in the context of future collider proposals

2















#### Dark matter is one of the big unanswered questions of particle physics

Axion searches have also failed to produce any experimental evidence of dark matter







#### • Dark matter is one of the big unanswered questions of particle physics



- Posits a dark sector not charged under an SM gauge group, where interactions with the SM are facilitated by an intermediary particle
- Dark photon implies an additional U(1) gauge group





- Posits a dark sector not charged under an SM gauge group, where interactions with the SM are facilitated by an intermediary particle
- Dark photon implies an additional U(1) gauge group





- Posits a dark sector not charged under an SM gauge group, where interactions with the SM are facilitated by an intermediary particle
- Dark photon implies an additional U(1) gauge group







- Posits a dark sector not charged under an SM gauge group, where interactions with the SM are facilitated by an intermediary particle
- Dark photon implies an additional U(1) gauge group



 $e^{-}$ 



 Anomalous magnetic moment of the muon measured very precisely by the Muon g-2 experiment at FermiLab



Muon g-2 experiment at FermiLab



#### Anomalous magnetic moment of the muon measured very precisely by the





#### Source

Muon g-2 experiment at FermiLab



#### Anomalous magnetic moment of the muon measured very precisely by the





#### Source

Muon g-2 experiment at FermiLab



#### Anomalous magnetic moment of the muon measured very precisely by the



#### Source

 Anomalous magnetic moment of the muon measured very precisely by the Muon g-2 experiment at FermiLab



Latest result: Phys. Rev. Lett. 131, 161802 (2023)



Dark photon could resolve discrepancy



## **Experimental Anomalies: X17**



See: Phys. Rev. Lett. 116, 042501 (2016), arXiv:1910.10459, Phys. Rev. C 104, 044003 (2021), arXiv:2205.07744, Phys. Rev. C 106, L061601 (2022), arXiv:2308.06473, arXiv:2311.18632, arXiv:2401.11676

Originally observed by ATOMKI collaboration in excited state decays of <sup>8</sup>Be



Physical Review D 95, 035017 (2017)



## **Experimental Anomalies: X17**

- Excess in  $e^+e^-$  invariant mass spectrum possibly indicative of a new boson with mass around 17 MeV
- Similar anomaly observed in <sup>4</sup>He, <sup>12</sup>C and using an independent apparatus
- Other ongoing efforts to confirm this

See: Phys. Rev. Lett. 116, 042501 (2016), arXiv:1910.10459, Phys. Rev. C 104, 044003 (2021), arXiv:2205.07744, Phys. Rev. C 106, L061601 (2022), arXiv:2308.06473, arXiv:2311.18632, arXiv:2401.11676

Originally observed by ATOMKI collaboration in excited state decays of <sup>8</sup>Be





### **Dark Photon: Current Limits**





### **Dark Photon: Current Limits**

Limits for past (grey) and future dark photon experiments



**Kinetic mixing strength** 

**Dark photon mass** 



## **Dark Photon: Current Limits**



- Unclear exactly what form the coupling  $\varepsilon$  takes
- Protophobic coupling (reduced coupling to protons) required by the X17



### Boson Dark <del>Photon</del>: Current Limits

Limits for past (grey) and future dark photon experiments



- Unclear exactly what form the coupling  $\varepsilon$  takes
- Protophobic coupling (reduced coupling to protons) required by the X17
  - Coupling no longer universal to the EM current:  $\mathscr{L}_{int} = e\varepsilon J_{\mu}A^{\prime\mu}$
  - Instead something more complex, but can still display limits in the same parameter space

For more details see: Feng et. al. <u>PRL 117, 071803 (2016)</u>, <u>Physical</u> <u>Review D 95, 035017 (2017)</u>, <u>Physical Review D 102, 036016 (2020)</u>



### Boson Dark <del>Photon</del>: Current Limits



- Unclear exactly what form the coupling  $\varepsilon$  takes
- Protophobic coupling (reduced coupling to protons) required by the X17
- Reopens some previously excluded parameter space



#### Boson Dark Photon: Current Limits



### Boson Dark <del>Photon</del>: Current Limits



- Unclear exactly what form the coupling  $\varepsilon$  takes
- Protophobic coupling (reduced coupling to protons) required by the X17
- Reopens some previously excluded parameter space
- Can only be probed with a fully leptonic experiment



### Boson Dark <del>Photon</del>: Current Limits



- Unclear exactly what form the coupling  $\varepsilon$  takes
- Protophobic coupling (reduced coupling to protons) required by the X17
- Reopens some previously excluded parameter space
- Can only be probed with a fully leptonic experiment







#### • Bombard fixed high Z target with low energy high intensity electron beam







#### • Bombard fixed high Z target with low energy high intensity electron beam







#### • Bombard fixed high Z target with low energy high intensity electron beam

**Reconstruct invariant mass of electron-positron system** 



 $\bullet$ 



for lots of statistics



#### Bombard fixed high Z target with low energy high intensity electron beam

**Reconstruct invariant mass of electron-positron system** 

#### Low energy allows probe of $g_{\mu} - 2$ favoured and X17 region, high intensity















### **ARIEL e-linac**

• 30 MeV electron beam setup





### **ARIEL e-linac**

• 30 MeV electron beam setup





### **ARIEL e-linac**

• 30 MeV electron beam setup





## ARIEL e-linac DARKIGHT

- 30 MeV electron beam setup
  - Best sensitivity below 17 MeV
  - Excellent for commissioning
- 50 MeV upgrade: new cryomodule
  - Allows probe of X17 favoured region


















۲

### **Spectrometers**

Left: electrons Right: positrons



۲

### **Spectrometers**

**Left: electrons Right: positrons** 



۲

**Plastic scintillator trigger hodoscopes** 

**Spectrometers** 

**Left: electrons Right: positrons** 



- GEMs
- Irreducible background:





Require coincidence in trigger from electron and positron arm to readout

- GEMs
- Irreducible background:

• Reducible background: e<sup>-</sup>



Require coincidence in trigger from electron and positron arm to readout



Ta

+ any positron

- Require coincidence in trigger from GEMs
- Irreducible background:

• Reducible background: e<sup>-</sup>

• Require coincidence in trigger from electron and positron arm to readout



+ any positron

Ta

Minimize by carefully selecting spectrometer arm angles Can be well-modelled

GEMs











 $10^{-5}$ 











10 $10^{\circ}$  $10^{-3}$ 

1010 $10^{-1}$ 

**Higher intensity** 

 $10^{-}$ 



**Higher energy** 

 $10^{\circ}$  $10^{\circ}$  $10^{-3}$ 

10 $10^{\circ}$  $10^{-}$ 

**Higher intensity** 

 $10^{-}$ 



**Higher energy** 



 Need smaller experiments to probe full parameter space

 $10^{\circ}$  $10^{\circ}$  $10^{-1}$ 10 $10^{\circ}$  $10^{-1}$  $10^{-}$ 

**Higher intensity** 



**Higher energy** 



**intensity** 

**Higher** i

- Need smaller experiments to probe full parameter space
- Complementary to main experiments
- Cost effective: generally built off of existing (or proposed) infrastructure
- For those built off future collider infrastructure: would elevate physics case



**Higher energy** 



|  | (Very) Rough timeline: | 1 |
|--|------------------------|---|
|--|------------------------|---|

| Complete, analyzing/<br>taking data<br>or commissioning | FASER<br>HPS<br>NA62-Dump<br>APEX<br>MUonE      | 10 <sup>-</sup><br>10 <sup>-</sup> |
|---------------------------------------------------------|-------------------------------------------------|------------------------------------|
| Installing, active R&D                                  | DarkLight<br>DarkQuest<br>Mu3e<br>LDMX          | $\epsilon$ 10 <sup>-100</sup>      |
| HL-LHC era                                              | SHiP<br>FASER2<br>DarkQuest2<br>FACET<br>REDTOP | 10                                 |
| Future collider era                                     | ILC beam dump<br>Muon beam dump                 | 10                                 |



### ILC Beam Dump



Annihilation or Bremsstrahlung production of A'

- Preliminary study focused around ILC-250 design proposal
  - $E_{\text{beam}} = 125 \text{ GeV}, N_{e^{\pm}} = 4 \times 10^{21} \text{/year}$

### arXiv:2105.13768

$$l_{dump} = 11 m$$
  
 $l_{sh} = 70 m$   
 $l_{dec} = 50 m$   
 $r_{det} = 2 m$ 

### ILC Beam Dump



- Exclusion curves dependent on which particle is going into the dump
- Positron beam dump has better sensitivity at lower  $\varepsilon$

### arXiv:2105.13768

14

(a) electron beam dump

### ILC Beam Dump



- Effect of polarized beams?
- Detector?
- Study neglects muon production modes

### arXiv:2105.13768

14

(a) electron beam dump



**Bremsstrahlung production of** A'in lead or water target







Bremsstrahlung production of A'in lead or water target

 Proposal examines visible final states with muon beam energies from order 10 GeV to 5 TeV, with various numbers of muons on target





- $\mu$ Target Shielding  $L_{sh}$  $L_{tar}$  $10^{-2}$ Lead Target  $E_0 = m_h/2$  $10^{-3}$  $10^{-4}$  $10^{-5}$ Ψ  $10^{-6}$  $10^{-7}$  $10^{-8}$  $10^{-9}$  10<sup>-2</sup>  $10^{-1}$
- Good reach even at more modest energies

### arXiv:2310.16110













- Additional final states? Only  $e^+e^-$  and  $\mu^+\mu^-$  examined here
- What kind of detector?
- Efficiency studies





- Additional final states? Only  $e^+e^-$  and  $\mu^+\mu^-$  examined here
- What kind of detector?
- Efficiency studies

### arXiv:2310.16110

### + other muon collider related challenges to overcome





### Both MuC and $e^+e^-$

 Both proposals look at several other new physics models, not just dark photons





### Both MuC and $e^+e^-$

- Both proposals look at several other new physics models, not just dark photons
  - E.g. Long lived particles, light scalar bosons, ALPs, leptophilic gauge bosons...



FIG. 2. The red and black curves show the bounds of se sitivity for ILC-250 GeV at 95% C.L. with 1- and 20-ve statistics. The shaded regions are constraints for E137 fro [25], SN 1987A from [25], 26], HB stars from [27], and SH from [18, 25, 29].



Figure 1: Contours of expected number of signal events for the  $U(1)_{e-\mu}$  model. energy is taken to be  $E_{\text{beam}} = 125$  (green), 250 (red), and 500 GeV (blue). The dc and dashed lines are for  $N_{\rm sig} = 10^{-2}$ , 1, and 10<sup>2</sup>, respectively, taking  $N_e = 4 \times$ mixing parameter is taken to be  $\kappa_{\epsilon} = 1$ . The pink and yellow shaded regions as by beam dump and neutrino-electron scattering experiments, respectively.



### Both MuC and $e^+e^-$

- Both proposals look at several other new physics models, not just dark photons
  - E.g. Long lived particles, light scalar bosons, ALPs, leptophilic gauge bosons...
- Length parameters and target materials will need to be optimized for overall best case scenario for new physics
  - Better Monte Carlo, proposed detectors?
- Only one proposal each so far





### Both MuC and $e^+e^-$

- Both proposals look at several other new physics models, not just dark photons
  - E.g. Long lived particles, light scalar bosons, ALPs, leptophilic gauge bosons...
- Length parameters and target materials will need to be optimized for overall best case scenario for new physics
  - Better Monte Carlo, proposed detectors?
- Only one proposal each so far

- far
  - energy ILC
  - dumps, can

### $e^+e^-$ Collider

 ILC-250 proposal only experimental design thus

 No dedicated proposals for other potential  $e^+e^$ colliders, or higher

Will have two beam accommodate more than one experiment

Shorter time scale



### Both MuC and $e^+e^-$

- Both proposals look at several other new physics models, not just dark photons
  - E.g. Long lived particles, light scalar bosons, ALPs, leptophilic gauge bosons...
- Length parameters and target materials will need to be optimized for overall best case scenario for new physics
  - Better Monte Carlo, proposed detectors?
- Only one proposal each so far

- far
  - No dedicated proposals for other potential  $e^+e^$ colliders, or higher energy ILC
  - Will have two beam dumps, can accommodate more than one experiment

Shorter time scale

### $e^+e^-$ Collider

 ILC-250 proposal only experimental design thus

### Muon Collider

- Much more R&D to take place on muon collider technology in coming years
  - Opportunities for additional smaller experiments during this R&D phase, with some dedicated proposals already in place (e.g. neutrino measurements)
- Beam dump experiments would also lend well to precision SM measurements





### Conclusion

- DarkLight:
  - With the current 30 MeV setup: installation by end of year, commissioning to follow
  - Future 50 MeV upgrade to allow us to probe X17 favoured region
- Future collider outlook: lots of interesting physics can be probed with beam dump experiments at future colliders
  - Lots of cool work to be done determining best experimental approaches