Contribution ID: 32 Type: Poster

Beam Dynamics Design for Alternating Phase Focusing Proton LINAC for a Compact Accelerator Based Neutron Source

Tuesday, 25 February 2025 16:28 (1 minute)

A prototype Canadian compact accelerator-driven neutron source (PC-CANS) is proposed for installation at the University of Windsor. The source is based on a high-intensity compact proton RF accelerator that delivers an average current of 10 mA of protons at 10 MeV to the target. This study can serve as a basis for the design of an initial stage of a new high-intensity compact accelerator-driven neutron source (CANS). The accelerator consists of a short radio frequency quadrupole (RFQ), followed by an efficient drift tube Linac (DTL) structure. Different variants of DTL were investigated for our studies. An Alternating Phase Focusing (APF), KONUS, CH-DTL, and Alvarez DTL as normal conducting cavities with a frequency of 352.2 MHz were considered in our Linac design. Details of the beam dynamics of an Alternating Phase Focusing (APF) DTL are presented in this paper.

Email Address

Presenter if not the submitter of this abstract

Funding Agency

Abstract classification - track type

Primary authors: ABBASLOU, Mina (TRIUMF); LAXDAL, Robert (TRIUMF); Dr MARCHETTO, Marco

(TRIUMF); KOLB, Philipp (TRIUMF); JUNGINGER, Tobias (Triumf)

Presenter: ABBASLOU, Mina (TRIUMF)
Session Classification: Poster Session 1