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✓Weight decay removal?


✓Papers status


✓Using the QPU w/ Pegasus and in Zephyr


✓High temperature gradient approximation for trained RBMs


• RBM and Diffusion model equivalence.


• Relaxation time in RBMs

Summary
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Papers status

• EPJC -> Rebuttal submitted?


• iEEE QCE Conf -> haven’t seen the proceedings online yet


• Neurips ML4Phys -> Got accepted!


• PRX draft -> on countdown for submission



Using QPU w/ Pegasus
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Using QPU w/ Pegasus
We estimate the QA inverse Temperature 
before generating each sample.
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Using QPU w/ Pegasus
We estimate the QA inverse Temperature 
before generating each sample.
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Using QPU w/ Pegasus
We estimate the QA inverse Temperature 
1 time. Then generate all samples.
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Using QPU w/ Pegasus
We estimate the QA inverse Temperature 
1 time. Then generate all samples. Wait 
2.5 seconds between samples
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Using QPU w/ Pegasus
What if we estimate the QA inverse by generating 1 sample per 
API call? (Wojtek’s method)


This way we should account for the heating due to the QPU 
programming.
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Using QPU w/ Pegasus
What if we estimate the QA inverse by generating 1 sample per 
API call?


This way we should account for the heating due to the QPU 
programming.

QA ClasβQA ≈ 2.6
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Using QPU w/ Pegasus
We estimate the QA inverse Temperature 
before generating each sample.

Winning method!
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Using QPU w/ Zephyr :: Winning method
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Using QPU w/ Zephyr :: vs Wojtek’s method
M

od
el

 A
M

od
el

 B

13



Using QPU w/ Zephyr :: vs Wojtek’s method
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Using QPU w/ Zephyr :: vs Wojtek’s method
M
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Time required to train using QPU: 


(1 sample generation time)X(# of samples)X(epochs)


(20ms)X(100k)X(200) = 111.1 hrs 
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Using QPU w/ Zephyr :: vs Wojtek’s method

• Train Enc and Decoder and train QPU afterwards with a smaller sample.


• Discuss with dwave options and roadmaps
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High Temperature gradient approximation
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1000 Gibbs sampling steps
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High Temperature gradient approximation
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High Temperature gradient approximation
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High Temperature gradient approximation
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High Temperature gradient approximation
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High Temperature gradient approximation

Each point in the histogram corresponds to a parameter being updated 
separately from the rest.
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High Temperature gradient approximation
CaloQVAE Model B

23



High Temperature gradient approximation
Small RBMs
Let’s assume an RBM w/ 10 visible and 10 hidden nodes.
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High Temperature gradient approximation
Small RBMs

Exact BGS

Let’s assume the weights and biases are sampled from a normal N(0,0.1)
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High Temperature gradient approximation
Small RBMs

Exact BGS

Let’s assume the weights and biases are sampled from a Uni(-1,1)
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High Temperature gradient approximation
Small RBMs

For Uni(-1,1) distributed weights and biases, the range of epsilons do not 
match between exact and BGS.
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High Temperature gradient approximation
Small RBMs
Let’s look at the energy histograms 

N(0,1) weights and biases

10k states sampled via BGS. 
We measure the state 
degeneracy
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High Temperature gradient approximation
Small RBMs
Let’s look at the energy histograms 

U(-1,1) weights and biases

10k states sampled via BGS. 
We measure the state 
degeneracy
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High Temperature gradient approximation
Small RBMs

Solvable Model of Spin glass, Kirkpatrick, Sherrington

𝒩(J0, J1)

J̃0 = NJ0 → 20 ⋅ δ

J̃ = N1/2J → 20 ⋅ 1

kT = 1

20 Gaussian

Uni
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High Temperature gradient approximation

• Next step: Train model w/o this approximation.
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Ratio between couplers and fields

For a given spin i, what is the ratio between the some over 
its couplers and the self-field?

1
hi ∑

j

Jij
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Ratio between couplers and fields
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Ratio between couplers and fields

34



RBM to Diffusion Model equivalence
Z = ∑

v,h

e−βE(v,h) E(v, h) = − ⟨v |a0⟩ − ⟨b0 |h⟩ − ⟨v |W |h⟩

W = UΣVt (SVD)

|x⟩ = U |v⟩, |y⟩ = V |h⟩

Z = ∑
x,y

e−βE(x,y)
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Diffusion models
How good are they?

CaloDiffusion


Kevin Pedro, Oz Amram

CaloLatentDiffusion


Madula, Mikuni
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✓Papers status


✓Using the QPU w/ Pegasus and in Zephyr


➡Meet with dwave to discuss strategy?


✓High temperature gradient approximation for trained RBMs


➡Train model w/o this approximation


✓Weight decay removal?


• RBM and Diffusion model equivalence.


• Relaxation time in RBMs

Summary
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✓UNet for CaloQVAE — Ian


✓CaloQVAE w/ linear attention layers


✓Train current model with large RBM in Pegasus


✓From RBM to diffusion models. Equivalence.


✓Relaxation times in RBMs


✓Training model with average of the gradient as opposed to gradient of the average 
in RBM


✓Associative mem in GAN — Coherent samples from Zephyr

ToDo
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