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Key differences

 Explicit latent variables: In RBMs, the hidden units are explicit latent 
variables that interact with the visible units. In contrast, in generative 
diffusion models, the latent variables (noise) are implicit, and there is no 
separate hidden layer. 

 Sampling method: RBMs use Gibbs sampling (or similar MCMC methods) for 
generating samples, while diffusion models rely on stochastic differential 
equations (SDEs) to generate samples through a diffusion process.

 Training objective: RBMs are typically trained using maximum likelihood or 
its approximation (contrastive divergence). In contrast, diffusion models are 
trained by matching the score function over multiple time steps of the 
reverse diffusion process.
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Denoising versus Gibbs sampling

 Diffusion

 Gibbs sampling
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Contrastive divergence-1 (CD-1) versus 
score-matching

 CD-1

 This is quite different from score-matching:

 If there is a connection, it should be made through the score function
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Why is it so important to employ a 
score-based diffusion model

 Energy:

 The score function of the RBM is related to the gradient of the free energy 
function of the visible units

7

       

    

log log log

log exp , log 1 expT
j ij i

j i

E

Fp F Z p

F c w v

    

           
  



  

v v

h

v

v

v v v

v h b v

 , T T TE    h v b v c h v Wh

 
i ij j ij i

j ii

F
b w c w v

v


        
 

v



Score-based diffusion models

 Forward noising process (drift and diffusion matrices):

 The reverse-time diffusion process has a closed-form solution:

 Score matching:

 Objective function:
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Both processes are Markovian

 The continuous diffusion process is Markovian since it admits a Fokker-
Planck-Kolmogorov equation: 

 In the case of the RBM, Gibbs sampling has a Markovian structure:
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The situation is not as simple for the 
discrete case

 If the stochastic differential equation is integrated with the Euler-Maruyama 
method, the denoising process is Markovian (unless the model is made non-
Markovian by construction):

 Unfortunately, this approach results in low accuracy and is unstable when the 
step size is insufficiently small. 
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Diffusion exponential integrator sampler 
(DEIS): Markovian or non-Markovian, that is 
the question
 DEIS solves the reverse equation with an exponential integrator (EI) by taking 

advantage of the semilinear structure of the reverse process

 With the transition matrix being given by

 https://arxiv.org/abs/2204.13902
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Non-Markovian structure of the DEIS: the 
devil is in the detail

 The solution for the variance-preserving stochastic differential equation:

 is

 Which is not Markovian!

 The discrete diffusion process might become non-Markovian due to the integration method, 
an undesirable feature from an RBM point of view.

12

tF tG
log1

2
td

dt


I log td
dt


 I

     εε ε
εˆ ˆ1 , 1 1ˆ 1 ,1 , ,

1

0

1
ˆ 1

ˆ

t t t t t t t t t
t t t t t t

t t t t t t
t

t

t
t


    

 
   
 

  
 

                                  

x x
x 0 Ix

x






   ε, ,T
t t tt t 

 s x L x



What is the solution (perhaps)?

 Predictor-corrector method.

 Predictor: Euler-Maruyama.

 Corrector: Langevin equation (stochastic equation).

 Because of its stochastic nature, the Langevin equation helps to escape local 
minima.

 The Fokker-Planck equation may be derived from the Langevin equation.

 The Fokker-Planck equation has a Markovian structure.
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Evidence lower bound (ELBO) and 
generative diffusion models

 “Variational autoencoders (VAE) are trained using the ELBO as a proxy loss 
function for the log-likelihood”

 Generative diffusion models use score matching and noise prediction

 ELBO of continuous-time diffusion models (importance sampling)

 Related to the log signal-to-noise ratio (log-SNR), the noise schedule is a 
strictly monotonically decreasing function (bijection):
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Theorem
https://arxiv.org/abs/2303.00848

 If the weighting is a monotonically increasing function of time, then the 
weighted diffusion objective

 is equivalent to the ELBO with data augmentation (additive noise).

 Comparing apples with apples!
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Conclusions

 In a few words: SDEs, Markovian, ELBO, integration method

 The connection between Restricted Boltzmann Machines (RBMs) and score-
based generative models lies in their shared focus on learning the gradient of 
the log-probability distribution (the score function). While RBMs implicitly 
learn the score through the energy function and contrastive divergence, 
score-based models explicitly learn the score function and use it to generate 
samples via stochastic differential equations (SDEs). Both approaches involve 
energy-based modelling and sampling via gradients, but their specific training 
and sampling methods differ.

 Thank you!
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