

Calo4pQVAE: Progress and updates

RIUMF

Canada's particle accelerator centre Centre canadien d'accélération des particules

Summary

Weight decay removal? Papers status Using the QPU w/ Pegasus and in Zephyr High temperature gradient approximation for trained RBMs RBM and Diffusion model equivalence. **Relaxation time in RBMs**

Papers status

EPJC -> Rebuttal submitted? \diamond iEEE QCE Conf -> haven't seen the proceedings online yet Neurips ML4Phys -> Got accepted! \rightarrow PRX draft -> on countdown for submission

Using QPU w/ Pegasus ¹⁰⁻² (a) (b)ц ^{10-э} Geant4 MCMC Samples 10^{-4} **OPU Samples** -4750 -4700 -4650 -4600 -4550 -4500 -4450 RBM Energy **RBM Energy** (d)4.2 4.4 ₹ 4.0 4.2 ed β in QA œ. 3.8 - 8.6 Estimat Estimat 9.6 — Estimated β per condition in QA --- Estimated β in QA 3.4 3.4 ---- Estimated β in conditioned QA --- Mean estimated β in conditioned QA 3.2 5 3.2 -600 800 1000 400 200 0 Iteration

We estimate the QA inverse Temperature before generating each sample.

Using QPU w/ Pegasus ¹⁰⁻² (a) (b)ц ^{10-э} Geant4 MCMC Samples 10^{-4} **OPU Samples** -4750 -4700 -4650 -4600 -4550 -4500 -4450 RBM Energy **RBM** Energy (d)4.2 4.4 ₹^{4.0} 4.2 ed β in QA .**⊆** പ്പ 3.8 ed - 8.6 Estimat Estimat 9.6 — Estimated β per condition in QA --- Estimated β in QA 3.4 3.4 ---- Estimated β in conditioned QA -- Mean estimated β in conditioned QA 3.2 -600 800 1000 400 200 0 Iteration

We estimate the QA inverse Temperature before generating each sample.

We estimate the QA inverse Temperature 1 time. Then generate all samples.

Using QPU w/ Pegasus We estimate the QA inverse Temperature 1 time. Then generate all samples. Wait 2.5 seconds between samples

What if we estimate the QA inverse by generating 1 sample per API call? (Wojtek's method)

programming.

What if we estimate the QA inverse by generating 1 sample per API call?

This way we should account for the heating due to the QPU programming.

 $\beta_{QA} \approx 2.6$

Winning method!

We estimate the QA inverse Temperature before generating each sample.

Using QPU w/ Zephyr :: Winning method

Using QPU w/ Zephyr :: vs Woitek's method

Model A

Using QPU w/ Zephyr :: vs Wojtek's method

Using QPU w/ Zephyr :: vs Wojtek's method

- Time required to train using QPU:
- (1 sample generation time)X(# of samples)X(epochs) (20ms)X(100k)X(200) = 111.1 hrs

Using QPU w/ Zephyr :: vs Wojtek's method

Train Enc and Decoder and train QPU afterwards with a smaller sample.
Discuss with dwave options and roadmaps

High Temperature gradient approximation

 $\left\langle E\frac{\partial E}{\partial \Theta}\right\rangle - \left\langle E\right\rangle \left\langle \frac{\partial E}{\partial \Theta}\right\rangle = 0$

Condition

1000 Gibbs sampling steps

High Temperature gradient approximation Untrained RBM Untrained RBM 100 a: non-zero vals = 1.0b: non-zero vals = 1.0 60 50 75 Histogram Histogram 40 50 30 $= \frac{\langle E \frac{\partial E}{\partial \Theta} \rangle - \langle E \rangle \langle \frac{\partial E}{\partial \Theta} \rangle}{=}$ 20 25 10 $\epsilon =$ ∂E 0 0.0 0.5 1.0 -0.50.0 0.5 1.0 -0.5 $\partial \Theta$ e e

 5.0×10^{4}

 4.0×10^{4}

Histogram 3.0×10^{4} 2.0×10^{4}

 1.0×10^{4}

Untrained RBM

-25

25

0

50

-50

-75

High Temperature gradient approximation

Trained RBMin MNIST w/ CD

High Temperature gradient approximation Trained RBM in MNIST W/ PCD Trained RBM in MNIST W/ PCD

 $c' = \frac{\langle E \frac{\partial E}{\partial \Theta} \rangle - \langle E \rangle \langle \frac{\partial E}{\partial \Theta} \rangle}{\langle \frac{\partial E}{\partial \Theta} \rangle}$

 1.00×10^{5} 10 Q 8 6 3 6 5 8 5 3 7.50×10^{4} 5.00×10^{4} 2.50×10^{4}

High Temperature gradient approximation

Each point in the histogram correspondence separately from the rest.

Each point in the histogram corresponds to a parameter being updated

High Temperature gradient approximation CaloQVAE Model B

Let's assume an RBM w/ 10 visible and 10 hidden nodes.

$$\epsilon = \frac{\langle E \frac{\partial E}{\partial \Theta} \rangle - \langle E \rangle \langle \frac{\partial E}{\partial \Theta} \rangle}{\langle \frac{\partial E}{\partial \Theta} \rangle}$$

Let's assume the weights and biases are sampled from a normal N(0,0.1)

BGS

Let's assume the weights and biases are sampled from a Uni(-1,1)

BGS

For Uni(-1,1) distributed weights and biases, the range of epsilons do not match between exact and BGS.

Let's look at the energy histograms

N(0,1) weights and biases

10k states sampled via BGS. We measure the state degeneracy

Let's look at the energy histograms

U(-1,1) weights and biases

10k states sampled via BGS. We measure the state degeneracy

 $\mathcal{N}(J_0, J_1)$ $\tilde{J}_0 = NJ_0 \to 20 \cdot \delta$ $\tilde{J} = N^{1/2}J \to \sqrt{20} \cdot 1$ kT = 1

FIG. 1. Phase diagram of spin-glass ferromagnet. Solvable Model of Spin glass, Kirkpatrick, Sherrington

- *Lively-grass-519* zeph after bug fixed + non high-T approx
- Worthy-paper-518 zeph after bug fixed + linear attention
- Devoted-lion-515 zeph after bug fixed
- Hearty-moon-514 zeph after bug fixed + linear attention + mask removed from activation during training
- Divine-dream-509 Zeph after bug fixed + mask removed from activation during training

lively-grass-519

worthy-paper-518

devoted-lion-515

divine-dream-509

stilted-disco-503

Peg and Zeph before fix

Mask removed from activation during

- *Lively-grass-519* zeph after bug fixed + non high-T approx
- Worthy-paper-518 zeph after bug fixed + linear attention
- Devoted-lion-515 zeph after bug fixed
- Hearty-moon-514 zeph after bug fixed + linear attention + mask removed from activation during training => Bad RBM
- Divine-dream-509 Zeph after bug fixed + mask removed from activation during training => Bad RBM

Devoted-lion-515 – zeph after bug fixed

We trained several models

Divine-dream-509 – Zeph after bug fixed + mask removed from activation during training

We trained several models

We trained several models

Lively-grass-519 — zeph after bug fixed + non high-T approx

0

Layers 10 to 14

The bug fix + the BGS exact gradient Has led to better metrics

- Before FPD (x10^3): 380.6906 ± 1.1246 :: KPD (x10^3): 0.6147 ± 0.0649
- After bug fix: FPD (x10^3): 379.78 ± 1.77 :: KPD (x10^3): 0.57 ± 0.05
- After bug fix + BGS exact gradient: FPD (x10^3): 362.67 ± 1.69 :: KPD (x10^3): 0.57 ± 0.08

the BGS exact gradient How was it coded?

Before Loss = MSE + Hits + Entropy + Positive_Energy + Negative_Energy **Backward** Step

After

Loss = MSE + Hits + Entropy <u>Update RBM parameters (using SGD and LR=0.001)</u> **Backward** Step

Ratio between couplers and fields

For a given spin i, what is the ratio between the some over its couplers and the self-field?

Ratio between couplers and fields

Ratio between couplers and fields

51

RBM to Diffusion Model equivalence $Z = \sum e^{-\beta E(v,h)}$ v,h $W = U\Sigma V^t (SVD)$ $|x\rangle = U|v\rangle, \qquad |y\rangle = V|h\rangle$ $Z = \sum e^{-\beta E(x,y)}$

х,у

 $E(v,h) = -\langle v | a_0 \rangle - \langle b_0 | h \rangle - \langle v | W | h \rangle$

Diffusion models How good are they?

CaloDiffusion

Kevin Pedro, Oz Amram

CaloLatentDiffusion

Madula, Mikuni

✓ UNet for CaloQVAE — Ian \checkmark CaloQVAE w/linear attention layers — further exploration needed Train current model with large RBM in Pegasus Associative mem in GAN — Coherent samples from Zephyr ATLAS dataset almost ready What if we add a UNet after our current CaloQVAE pipeline or after the encoder?

Work in progress

Papers status

→PRX:

- submit to arxiv after reviewing comments by Wojtek.
- Evaluate model using CaloChallenge script and perhaps include in paper.

Submit paper!

Neurips (Not obliged to improve results)

- Train model with 9 decoders + fixed bug + non-high T approximation. Compare with results in Neurips paper.
- Evaluate model using CaloChallenge script
- Using the QPU w/ Pegasus and in Zephyr
 - \rightarrow Dwave working on understanding better the T fluctuations due to flux biasing.
- High temperature gradient approximation for trained RBMs

Removing this approximation improves results.

RBM and Diffusion model equivalence. Relaxation time in RBMs.

Train 2 pegasus models 1) with fixed bug 2) with fixed bug + non-high T approximation. Discuss results and replcace in preprint.