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Motivation
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✦As we approach the launch of the High Luminosity Large Hadron Collider (HL-LHC) by 
the decade's end, the computational demands of traditional collision simulations have 
become untenably high.  

✦Current methods, relying heavily on Monte Carlo simulations for event showers in 
calorimeters, are projected to require millions of CPU-years annually, a demand far 
beyond current capabilities.  

✦This bottleneck presents a unique opportunity for breakthroughs in computational 
physics through the integration of generative AI with quantum computing technologies.

Scientific Data Lake for High Luminosity LHC project and other data-intensive 
particle and astro-particle physics experiments. InJournal of Physics: Conference 

Series 2020 Dec 1 (Vol. 1690, No. 1, p. 012166). IOP Publishing.



CaloChallenge
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ATLAS Detector

https://atlas.cern/Discover/Detector



CaloChallenge
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ATLAS Detector

(Simplified)



CaloChallenge
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Dataset

Particle type Electron showers

Layers 45

Voxels per layer 9 radial * 16 angular

Incident energies Log-uniform distribution 
(1GeV-1TeV)

N. of events 100,000



Generative Models
Simplest Example: Box-Muller Method
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Recipe: 

1. Generate two uniformly independent, 
identically distributed random numbers 

.


2. Substitute in:





U1 and U2

Z0 = f0(U1, U2) = −2 ln U1 cos(2πU2)

Z1 = f1(U1, U2) = −2 ln U1 sin(2πU2)

f0(U1, U2)

f1(U1, U2)
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Generative Models  
For particle-calorimeter interactions + quantum-assisted
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Variational Autoencoders (VAE)
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qϕ(z |x) pθ(x |z)

ℒϕ,θ(x) = ⟨ln pθ(x |z)⟩qϕ(z|x) − ⟨ln
qϕ(z |x)

pθ(z)
⟩qϕ(z|x)

Reconstruction
Regularizer

pθ(z)

✦Easy to train.


✦Average performance.


✦Legacy VAE assumes a 
Gaussian prior.



VAE + Restricted Boltzmann Machine

12

✦Replace Gaussian prior with 
Boltzmann prior.


✦More expressiveness.


✦However, this comes at a cost.

qϕ(z |x) pθ(x |z)

ℒϕ,θ(x) = ⟨ln pθ(x |z)⟩qϕ(z|x) − ⟨ln
qϕ(z |x)

pθ(z)
⟩qϕ(z|x)

Reconstruction
Regularizer

pθ(z)



Basics
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⟨v | |h⟩

E(v, h) = −
nv

∑
i=1

viai −
nh

∑
j=1

bjhj − ∑
i,j

viWijhj

Restricted Boltzmann Machine

Suppose a data set , such that .


I) An RBM will fit a Boltzmann distribution, , to the data set.


II) The fitting is done by maximizing the log-likelihood, .


III) RBMs are composed by a two-partite graph, where v denotes 
the visible layer and h the hidden layer.

{vα}n
α=1 vi ∈ {0,1}

p(v)

ln p(v)

p(v, h) =
exp(−E(v, h))

Z

Z(W, a, b, β = 1) = ∑
v′￼,h′￼

exp(−E(v′￼, h′￼))

Boltzmann Dist

Energy

Partition Function



VAE + Restricted Boltzmann Machine
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✦Replace Gaussian prior with 
Boltzmann prior.


✦More expressiveness.


✦However, this comes at a cost.

qϕ(z |x) pθ(x |z)
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qϕ(z |x)

pθ(z)
⟩qϕ(z|x)

Reconstruction
Regularizer

pθ(z)



15

Quantum-Assisted Discrete VAE

qϕ(z |x) pθ(x |z)

ℒϕ,θ(x) = ⟨ln pθ(x |z)⟩qϕ(z|x) − ⟨ln
qϕ(z |x)

pθ(z)
⟩qϕ(z|x)

Reconstruction
Regularizer

pθ(z)

✦Replace Gaussian prior with 
Boltzmann prior.


✦More expressiveness.


✦However, this comes at a cost.


✦But we might be able to avoid 
Gibbs sampling…



Quantum Annealer
Basics

✦An array of superconducting flux quantum bits with 
programmable spin–spin couplings and self-fields.  

✦Relies on the Adiabatic Approximation. 

✦The goal is to find the ground state of a Hamiltonian . 


✦In practice, quantum annealers have a strong interaction 
with the environment which lead to thermalization and 
decoherence. It can also reach a dynamical arrest.

H0
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H0H1

ci

Amin MH. Searching for quantum speedup in 
quasistatic quantum annealers. Physical Review A. 
2015 Nov 19;92(5):052323.
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Chimera QA Pegasus QA
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h2

h3

2-partite Graph 4-partite Graph

Fully Connected RBM

2-partite Graph

Topologies
Quantum Annealer

Max coord num=15

Zephyr QA

4-partite Graph
Max coord num=20
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Calo4pQVAE

Training

Validation



QPU conditioning
σ(i)

z =
1 hi < 0 and  |hi | > ∑j |Jij |

−1 hi > 0 and  |hi | > ∑j |Jij |

Label σ(k)
z ∈ {−1,1}302f g hk ∈ {−M, M}302

k = 1,...,302 (Condition partition)

★arXiv:2410.22870



Results
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RBM Log-likelihood saturates, 
indicating the RBM has trained.

Slope annealing ends
Encoder and decoder params frozen

Frechet Particle Distance Kernel Particle Distance

Following results correspond to 
model instance = epoch 200

FPD(×103) = 380.7 ± 1.1
KPD(×103) = 0.61 ± 0.06

Evaluating generative models in high energy physics. Physical Review D. 2023 Apr 1;107(7):076017.



Results
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QA inverse temperature 
estimation

System QA at 
Temperature 1/βQA

System B at 
Temperature 1/β

QA temperature estimation

✦ Equate entropy of system QA to entropy of system B


✦ Assume β = βQA + Δβ

★arXiv:2410.22870



(a) (b) (c)

(d) (e) (f)

Results
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★arXiv:2410.22870



Discussion / Conclusions / Perspectives 

✦In the process of getting dataset from ATLAS. 

✦Implementing hierarchical decoder. 

✦Training using QPU.
23

FPD KPD

Pegasus

Zephyr

Zephyr

(×103) (×103)

380.7 ± 1.1 0.61 ± 0.06
0.57 ± 0.08362.7 ± 1.7

443.0 ± 2.4 0.84 ± 0.1

Krause C, Giannelli MF, Kasieczka G, Nachman B, Salamani D, Shih D, Zaborowska A, 
Amram O, Borras K, Buckley MR, Buhmann E. CaloChallenge 2022: A Community 
Challenge for Fast Calorimeter Simulation. arXiv preprint arXiv:2410.21611. 2024 Oct 
28.

We’re here We’re here
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