

Conditioned Calo4pQVAE: High-energy calorimeter-particle interactions using deep learning and quantum annealers

*****arXiv:2410.22870

11/11/24 :: IFAE UAB

J. Quetzalcoatl Toledo-Marin Quantum Machine Learning Research Associate

P DTRC-NRC

%TRIUMF

Canada's particle accelerator centre Centre canadien d'accélération des particules

Motivation

- +As we approach the launch of the High Luminosity Large Hadron Collider (HL-LHC) by the decade's end, the computational demands of traditional collision simulations have become untenably high.
- Current methods, relying heavily on Monte Carlo simulations for event showers in calorimeters, are projected to require millions of CPU-years annually, a demand far beyond current capabilities.
- This bottleneck presents a unique opportunity for breakthroughs in computational physics through the integration of generative AI with quantum computing technologies.

Year

ATLAS Preliminary 2022 Computing Model - CPU: 2031, Conservative R&D

Scientific Data Lake for High Luminosity LHC project and other data-intensive particle and astro-particle physics experiments. InJournal of Physics: Conference Series 2020 Dec 1 (Vol. 1690, No. 1, p. 012166). IOP Publishing.

Data Deriv MC Deriv Analysis

Data Proc MC-Full(Sim) MC-Full(Rec) MC-Fast(Sim) MC-Fast(Rec) EvGen Heavy lons

CaloChallenge

ATLAS Detector

https://atlas.cern/Discover/Detector

CaloChallenge

ATLAS Detector (Simplified)

CaloChallenge

	Dataset		
Particle type	Electron showers		
Layers			
Voxels per layer	9 radial * 16 angular		
Incident energies	Log-uniform distribution (1GeV-1TeV)		
N. of events	100		

Gaussian Distribution

Recipe:

- 1. Generate two **uniformly** independent, identically distributed random numbers U_1 and U_2 .
- 2. Substitute in:

 $Z_0 = f_0(U_1, U_2) = \sqrt{-2\ln U_1} \cos(2\pi U_2)$ $Z_1 = f_1(U_1, U_2) = \sqrt{-2\ln U_1} \sin(2\pi U_2)$

1. Generate two **uniformly** independent, identically distributed random numbers U_1 and U_2 .

2. Substitute in:

 $Z_0 = f_0(U_1, U_2) = \sqrt{-2\ln U_1} \cos(2\pi U_2)$ $Z_1 = f_1(U_1, U_2) = \sqrt{-2\ln U_1} \sin(2\pi U_2)$

Generative Models For particle-calorimeter interactions + quantum-assisted

Variational Autoencoders (VAE)

Average performance.

Legacy VAE assumes a Gaussian prior.

 $f/q_{\phi}(z|x)$

VAE + Restricted Boltzmann Machine

Replace Gaussian prior with Boltzmann prior.

More expressiveness.

However, this comes at a cost.

 $1/q_{\phi}(z|x)$

Restricted Boltzmann Machine Basics

 $|h\rangle$ $\langle v |$

- Suppose a data set $\{v^{\alpha}\}_{\alpha=1}^{n}$, such that $v_i \in \{0,1\}$.
- I) An RBM will fit a Boltzmann distribution, p(v), to the data set.
- II) The fitting is done by maximizing the log-likelihood, $\ln p(v)$.
- III) RBMs are composed by a two-partite graph, where v denotes the visible layer and **h** the hidden layer.

VAE + Restricted Boltzmann Machine

Replace Gaussian prior with Boltzmann prior.

More expressiveness.

However, this comes at a cost.

 $1/q_{\phi}(z|x)$

Quantum-Assisted Discrete VAE

- Replace Gaussian prior with Boltzmann prior.
- More expressiveness.
- +However, this comes at a cost.
- But we might be able to avoid Gibbs sampling...

Quantum Annealer Basics

An array of superconducting flux quantum bits with programmable spin-spin couplings and self-fields.

Relies on the Adiabatic Approximation.

 \bullet The goal is to find the ground state of a Hamiltonian H_0 .

In practice, quantum annealers have a strong interaction with the environment which lead to **thermalization** and decoherence. It can also reach a *dynamical arrest*.

2015 Nov 19;92(5):052323.

Quantum Annealer Topologies

Fully Connected RBM

2-partite Graph

Chimera QA

2-partite Graph

4-partite Graph

Max coord num=15

Zephyr QA

Max coord num=20

Training

Validation

QPU conditioning

*arXiv:2410.22870

$k = 1, \dots, 302$ (Condition partition)

 $\mathcal{H}_{ising} = \cdot$

 $\sigma_{z}^{(i)} = \begin{cases} 1 & h_i < 0 \text{ and } |h_i| > \sum_j |J_{ij}| \\ -1 & h_i > 0 \text{ and } |h_i| > \sum_j |J_{ij}| \end{cases}$

302
 g $h_k \in \{-M, M\}^{302}$

$$\frac{A(s)}{2} \left(\sum_{i} \hat{\sigma}_{x}^{(i)}\right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \hat{\sigma}_{z}^{(i)} + \sum_{i>j} J_{i,j} \hat{\sigma}_{z}^{(i)} \hat{\sigma}_{z}^{(j)}\right)$$

Initial Hamiltonian Final Hamiltonian

Results

Slope annealing ends Encoder and decoder params frozen

0.55 0.50 0.45 Val 0.40 0.35 0.30 0.25 0.20

model instance = epoch 200

Evaluating generative models in high energy physics. Physical Review D. 2023 Apr 1;107(7):076017.

Results
OA temperature estimation
*arXiv:R410.R28970
System QA at
Temperature
$$1/\beta_{QA}$$

System B at
Temperature $1/\beta$
 $P_{QA}(x) = \frac{e^{-\beta_{QA}H(x)}}{Z(\beta_{QA})}$
 $P_B(x) = \frac{e^{-\beta H(x)}}{Z(\beta)}$
• Equate entropy of system QA to entropy of system B
• Assume $\beta = \beta_{QA} + \Delta\beta$
 $\beta_{t+1} = f_{\delta}(\beta_t) \equiv \beta_t \left(\frac{\langle H \rangle_{QA}(r)}{\langle H \rangle_{B(1)}}\right)^{\delta}$

*****arXiv:2410.22870

Results

Discussion / Conclusions / Perspectives

	Geant4	GPU (A100)	QPU	Annealing time
Time	$\sim 1 \mathrm{~s}$	$\sim 2 \; \mathrm{ms}$	$0.2 \mathrm{~ms}$	$\sim 0.02 \mathrm{ms}$

	FPD (×10 ³)	KPD ($\times 10^{3}$)
Pegasus	443.0 ± 2.4	0.84 ± 0.1
Zephyr	380.7 ± 1.1	0.61 ± 0.06
Zephyr	362.7 ± 1.7	0.57 ± 0.08

In the process of getting dataset from ATLAS. Implementing hierarchical decoder. Training using QPU.

Krause C, Giannelli MF, Kasieczka G, Nachman B, Salamani D, Shih D, Zaborowska A, Amram O, Borras K, Buckley MR, Buhmann E. CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation. arXiv preprint arXiv:2410.21611. 2024 Oct 28.

10000

Acknowledgements

Undergrads:

✦lan Lu @ UofT

Deniz Sogutlu @ UBC

PhDs:

✦Hao Jia @ UBC

Pls

Eric Paquet @ NRC

Colin Gay @ UBC

Roger Melko @ Perimeter Institute

Geoffrey Fox @ University of Virginia

Max Swiatlowski @ TRIUMF

Wojtek Fedorko @ TRIUMF

*arXiv:2410.22870

★ Neurips ML4Phys 2024 (accepted)

 \star IEEE-QCE QAI WS (2024)

*****arXiv:2312.03179

*arXiv:2210.07430. NeurIPS 2021

QaloSim/CaloQVAE

Sebastian Gonzalez @ UBC

Sehmimul Hoque @ University of Waterloo

Abhishek Abhishek @ UBC Soren Andersen @ Lund University

Supported by:

- NRC AQC-002
- NSERC SAPPJ-2020-00032
- SAPPJ-2022-00020
- NSF 2212550
- **DOE DE-SC0023452**
- Mitacs IT39533

Nov. 03, 2025 - Dec. 19, 2025

Application deadline: Dec. 8, 2024

Coordinators:

James Halverson, Jessica N. Howard*, Anindita Maiti^{**}, Roger Melko, J. Quetzalcoatl Toledo-Marín

Scientific Advisors:

Geoffrey Fox, Eun-Ah Kim, Maximilian Swiatlowski

*Lead coordinator **Diversity coordinator

jtoledo@TRIUMF.ca

