Neutrino measurements relevant to g_A quenching

Saori Pastore NuInt 17: 11th International Workshop on Neutrino-Nucleus Scattering in the Few-GeV Region Toronto, CA - June 2017

Open Questions in Fundamental Symmetries and Neutrino Physics Majorana Neutrinos, Neutrinos Mass Hierarchy, CP-Violation in Neutrino Sector, Dark Matter

WITH

Carlson & Gandolfi (LANL) - Schiavilla & Baroni (ODU/JLAB) - Wiringa & Piarulli & Pieper (ANL) Mereghetti & Dekens & Cirigliano (LANL)

REFERENCES

PRC78(2008)064002 - PRC80(2009)034004 - PRL105(2010)232502 - PRC84(2011)024001 - PRC87(2013)014006 PRC87(2013)035503 - PRL111(2013)062502 - PRC90(2014)024321 - JPhysG41(2014)123002 - PRC(2016)015501

Fundamental Physics Quests: Accelerator Neutrinos

LBNF

neutrinos oscillate → they have tiny masses = BSM physics Beyond the Standard Model Simplified 2 flavors picture:

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = sin^{2}2\Theta sin^{2}\left(rac{\Delta m^{2}L}{2E_{v}}
ight)$$

* Unknown * v-mass hierarchy, CP-violation, accurate mixing angles Neutrino-Nucleus scattering

CCQE on 12C

DUNE, MiniBoone, T2K, Minerva ... active material * ¹²C, ⁴⁰Ar, ¹⁶O, ⁵⁶Fe, ... *

 β -decay

The " g_A problem"

Theory vs Experiment: The " g_A problem"

* $g_A^{\text{eff}} \simeq 0.70 g_A$ * required to bring theory in agreement with expt

Fig. from Chou et al. PRC47(1993)163

Fundamental Physics Quests: Double Beta Decay

observation of $0\nu\beta\beta$ -decay \rightarrow lepton # $L = l - \overline{l}$ not conserved \rightarrow implications in matter-antimatter imbalance

Majorana Demonstrator

* detectors' active material ⁷⁶Ge * $0\nu\beta\beta$ -decay $\tau_{1/2} \gtrsim 10^{25}$ years (age of the universe 1.4×10^{10} years) 1 ton of material to see (if any) ~ 5 decays per year * also, if nuclear m.e.'s are known, absolute *v*-masses can be extracted *

2015 Long Range Plane for Nuclear Physics

Fundamental Physics Quests rely on Nuclear Physics

Nuclei used as laboratories for precision tests of the standard model and in searches for beyond the standard model physics

An accurate understanding of nuclear structure and dynamics is required to extract new physics from nuclear effects

http://www.cpepweb.org

Standard β Decay

Nuclear Interactions

The nucleus is made of A non-relativistic interacting nucleons and its energy is

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are two- and three-nucleon operators based on EXPT data fitting and fitted parameters subsume underlying QCD

Energy Spectrum and Shape of Nuclei

Carlson et al. Rev.Mod.Phys.87(2015)1067

Constant density surfaces for a polarized deuteron in the $M=\pm 1$ (left) and M=0 (right) states

Carlson and Schiavilla Rev.Mod.Phys.70(1998)743

Lovato et al. PRL111(2013)092501

Electroweak Reactions

* $\omega \sim 10^2$ MeV: Accelerator neutrinos * $\omega \sim 10^1$ MeV: EM decay, β -decay * $\omega \lesssim 10^1$ MeV: Nuclear Rates for Astrophysics

Nuclear Currents

* In Impulse Approximation IA nuclear currents are expressed in terms of those associated with individual protons and nucleons, *i.e.*, ρ_i and \mathbf{j}_i , 1b-operators

* Two-body 2b currents essential to satisfy current conservation

$$\mathbf{q} \cdot \mathbf{j} = [H, \boldsymbol{\rho}] = [t_i + v_{ij} + V_{ijk}, \boldsymbol{\rho}]$$

* Villars, Myiazawa, Chemtob, Riska, Schiavilla, Marcucci, ...

Electromagnetic Currents from Chiral Effective Field Theory

* 3 unknown Low Energy Constants: fixed so as to reproduce d, ³H, and ³He magnetic moments

Pastore et al. PRC78(2008)064002 & PRC80(2009)034004 & PRC84(2011)024001 * analogue expansion exists for the Axial nuclear current - Baroni et al. PRC93 (2016)015501 *

Magnetic Moments and M1 Transitions

- * 2b electromagnetic currents bring the THEORY in agreement with the EXPT
- * $\sim 40\%$ 2b-current contribution found in ⁹C m.m.
- * $\sim 60-70\%$ of total 2b-current component is due to one-pion-exchange currents
- * \sim 20-30% 2b found in M1 transitions in ⁸Be

Pastore et al. PRC87(2013)035503 & PRC90(2014)024321, Datar et al. PRL111(2013)062502

 β -decay

The " g_A problem" and the role of two-nucleon correlations and two-body currents

 g_A nucleon axial coupling constant

Preliminary results

Theory vs Experiment: The " g_A problem"

* $g_A^{\text{eff}} \simeq 0.70 g_A$ * required to bring theory in agreement with expt We use $\checkmark g_A = 1.2723$ from PDG \checkmark without quenching factor

Fig. from Chou et al. PRC47(1993)163

Correlations in our formalism

Minimize expectation value of H = T + AV18 + IL7

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

using trial function

$$|\Psi_V\rangle = \left[\mathscr{S}\prod_{i < j} (1 + U_{ij} + \sum_{k \neq i, j} U_{ijk})\right] \left[\prod_{i < j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

- * single-particle $\Phi_A(JMTT_3)$ is fully antisymmetric and translationally invariant
- * central pair correlations $f_c(r)$ keep nucleons at favorable pair separation
- * pair correlation operators U_{ij} reflect influence of v_{ij} (AV18)
- * triple correlation operators U_{ijk} reflect the influence of V_{ijk} (IL7)

In an uncorrelated wave function 1) *U_{ij}* and *U_{ijk}* are turned off, and 2) only the dominant spatial symmetry is kept

Lomnitz-Adler, Pandharipande, and Smith NPA361(1981)399 Wiringa, PRC43(1991)1585

Role of correlations in beta-decay m.e.'s

data from TUNL compilations & Suzuki et al. PRC67(2003)044302 & Chou et al. PRC47(1993)163

* Preliminary *

Two-body Axial Currents from χEFT

- * c₃ and c₄ are taken them from Entem and Machleidt fits of nuclear interactions PRC68(2003)041001 & Phys.Rep.503(2011)1
- * c_D fitted to GT m.e. of tritium beta-decay

 $\checkmark g_A = 1.2723$ from PDG \checkmark A. Baroni *et al.* PRC93(2016)015501 & PRC94(2016)024003

Ab initio calculations with EW Currents from χ EFT

```
Park, Min, and Rho et al. (1996)
```

applications to A=2–4 systems by Song, Lazauskas, Park *at al.* (2009-2011) within the hybrid approach

```
* Based on EM \chiEFT currents from NPA596(1996)515
```

• Meissner and Walzl (2001);

```
Kölling, Epelbaum, Krebs, and Meissner (2009-2011)
```

applications to:

```
d and <sup>3</sup>He photodisintegration by Rozpedzik et al. (2011); e-scattering (2014);
d magnetic f.f. by Kölling, Epelbaum, Phillips (2012);
radiative N - d capture by Skibinski et al. (2014)
```

.

.

* Based on EM χ EFT currents from PRC80(2009)045502 & PRC84(2011)054008 and consistent χ EFT potentials from UT method

```
    Phillips (2003-2007)
```

applications to deuteron static properties and f.f.'s

Park, Min, and Rho et al. (90-ies)

applications to A=2–4 systems including μ -capture, pp-fusion, hep \cdot

- Krebs and Epelbaum *et al.* (2016)
- ▶ Klos *et al.* (2015)

Role of two-body currents in beta-decay m.e.'s

SNPA currents VMC Calculations

χEFT currents GFMC calculations

 * SNPA and χEFT two-body currents are qualitatively in agreement (both are fitted to the tritium β-decay)
 * Two-body currents are found to provide a small (negligible) contribution

* no quenching required! (limited to the light systems we studied)

Neutrino measurements relevant to g_A quenching

* Low-energy v-scattering *

Outlook

$$\begin{array}{c} \mathbf{\hat{i}}_{\mathbf{j}_{\mathbf{k}}}^{2} & \mathbf{j}_{\mathbf{i}\mathbf{k}} \rangle > 0 \\ \mathbf{\hat{j}}_{\mathbf{k}}^{2} & \mathbf{j}_{\mathbf{i}\mathbf{k}} \rangle > 0 \\ \mathbf{\hat{j}}_{\mathbf{k}}^{2} & \mathbf{\hat{j}}_{\mathbf{k}}^{2} v_{\mathbf{r}} \rangle \propto \langle v_{\mathbf{r}}^{2} \rangle > 0 \\ \mathbf{\hat{j}}_{\mathbf{k}}^{2} & \mathbf{j}_{\mathbf{k}\mathbf{k}} v_{\mathbf{r}} \rangle \propto \langle v_{\mathbf{r}}^{2} \rangle > 0 \end{array}$$

Institute for Nuclear Theory (INT) Program - Seattle - Summer 2018

Fundamental Physics with Electroweak Probes of Light Nuclei June 12 - July 13, 2018 S. Bacca, R. J. Hill, S. Pastore, D. Phillips

> Contacts http://www.int.washington.edu/ saori.pastore@gmail.com saori@lanl.gov

EXTRA SLIDES

Three-body Axial Currents from χ EFT

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

SNPA Two-body Axial Currents

- 1) One body has GT, relativistic corrections, PS from pion-pole diagrams
- 2) Two-body currents
 - 2.a) Major contribution from Δ -excitation current
 - 2.b) Negligible contributions from $A\pi$, $A\rho$, $A\pi\rho$
- 3) $AN\Delta$ coupling fixed to tritium beta-decay
- 4) $\sim 3\%$ additive correction from Δ -current

Chemtob, Rho, Towner, Riska, Schiavilla, Marcucci ...

see, e.g., Marcucci et al. PRC63(2001)015801 and references therein

Error Estimate

* 'N3LO-\Delta' corrections can be 'large' *

* SNPA and χ EFT currents qualitatively in agreement, χ EFT isoscalar currents provide better description

exp data *

Pastore et al. PRC87(2013)035503

χ EFT currents: a closer look

A = 7 Captures

	gs	ex
LO	2.334	2.150
N2LO	-3.18×10^{-2}	-2.79×10^{-2}
N3LO(OPE)	-2.99×10^{-2}	-2.44×10^{-2}
N3LO(CT)	2.79×10^{-1}	2.36×10^{-1}
N4LO(2b)	-1.61×10^{-1}	-1.33×10^{-1}
N4LO(3b)	-6.59×10^{-3}	-4.86×10^{-3}
TOT(2b+3b)	0.050	0.046

* Large cancellations due to positive CT at N3LO with c_D fixed to GT m.e. of tritium

In preparation

Convergence and cutoff dependence

Tritium β -decay

 $* \sim 2\%$ additive contribution from two-body currents

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

Back-to-back np and pp Momentum Distributions

JLab, Subedi et al. Science320(2008)1475

Nuclear properties are strongly affected by two-nucleon interactions!

Electromagnetic Currents from Nuclear Interactions (SNPA currents)

$$\mathbf{q} \cdot \mathbf{j} = [H, \boldsymbol{\rho}] = [t_i + v_{ij} + V_{ijk}, \boldsymbol{\rho}]$$

Longitudinal component fixed by current conservation Plus transverse "phenomenological" terms

Villars, Myiazawa (40-ies), Chemtob, Riska, Schiavilla ... see, *e.g.*, Marcucci *et al.* PRC72(2005)014001 and references therein

Currents from nuclear interactions

Satisfactory description of a variety of nuclear em properties in $A \le 12$

 2 H(p, γ) 3 He capture

Marcucci et al. PRC72, 014001 (2005)

$0\nu\beta\beta$ -decay

$0\nu\beta\beta$ -decay matrix elements and the role of two-nucleon correlations

Majorana Demonstrator

Preliminary results

Double beta-decay m.e.'s in ${}^{12}\text{Be}(0^+;2) \rightarrow {}^{12}\text{C}(0^+;0)$: A test case

Preliminary

Magnetic Moments in $A \le 10$ Nuclei - bis

Predictions for A > 3 nuclei

- $\mu_N(IA) = \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 \tau_{i,z})/2]$
- ▶ ⁹C (⁹Li) dominant spatial symmetry [s.s.] = [432] = $[\alpha, {}^{3}\text{He}({}^{3}\text{H}), pp(nn)] \rightarrow \text{Large MEC}$
- ▶ ⁹Be (⁹B) dominant spatial symmetry [s.s.] = [441] = $[\alpha, \alpha, n(p)]$

PRC87(2013)035503

Outlook

The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for. J.Phys.G41(2014)123002 - S.Bacca&S.P.

- * EM structure and dynamics of light nuclei
 - Charge and magnetic form factors of $A \le 10$ systems
 - M1/E2 transitions in light nuclei
 - Radiative captures, photonuclear reactions ...
 - Role of Δ-resonances in 'MEC' (EM current consistent with the chiral 'Δ-full' NN potential developed by M. Piarulli et al. PRC91(2015)024003)
 - Fully consistent χ EFT calculations with 'MEC' for A > 4 (based on, *e.g.*, PRC91(2015)024003)
 - Zemach moments of light nuclei with 'MEC'
- * Electroweak structure and dynamics of light nuclei
 - Test axial currents (chiral and conventional) in light nuclei (A. Baroni et al. PRC93(2016)015501)
 - Incorporate pion production mechanisms in STA
- * Strong reactions in nuclei
 - QMC calculations of nuclear reactions

χ EFT EM currents at N3LO: fixing the EM LECs

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

* d^{S} and c^{S} from EXPT μ_d and $\mu_S({}^{3}\text{H}/{}^{3}\text{He})$

Isovector sector:

* model I =
$$c^V$$
 from EXPT $npd\gamma$ xsec.

* model II = c^V from EXPT $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$ m.m. \leftarrow our choice

Note that:

 χ EFT operators have a power law behavior \rightarrow introduce a regulator to kill divergencies at large Q, *e.g.*, $C_{\Lambda} = e^{-(Q/\Lambda)^n}$, ...and also, pick *n* large enough so as to not generate spurious contributions

$$C_{\Lambda} \sim 1 - \left(\frac{Q}{\Lambda}\right)^n + \dots$$

Predictions with χ EFT EM currents for A = 2-3 systems

np capture xsec. (using model II) / μ_V of A = 3 nuclei (using model I) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

- ▶ $npd\gamma$ xsec. and $\mu_V(^{3}\text{H}/^{3}\text{He})$ m.m. are within 1% and 3% of EXPT
- Two-body currents important to reach agreement with exp data
- ▶ Negligible dependence on the cutoff entering the regulator $exp(-(k/\Lambda)^4)$

PRC87(2013)014006