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Core Collapse Supernovae

Damian Peach

* CCSNe are one of the brightest ’ T I S 5.N2916|6}dj'-- :
astrophysical phenomena in the modern e | . - EpCy -

universe.

-
.

* They are an important site for
nucleosynthesis and the mechanism for
unbinding elemental products of stellar
evolution and spreading them throughout
the galaxy. They help trigger star
formation, and are the source both
neutron stars and black holes.

* Central engine provides an unique and
fantastic laboratory for studying high
density/temperature and neutron rich
conditions. Requires us being able to _ .
observe central engine -> Neutrinos! | : o Centauris A




Collapse Phase

« Most massive stars core collapse
during the red supergiant phase

« CCSNe are triggered by the collapse
of the iron core (~1000km, or 1/10°
of the star’s radius)

« Collapse ensues because electron
degeneracy pressure can no longer
support the core against gravity
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Collapse Phase: Role of Neutrinos

* “Emission of neutrinos deleptonizes the core and accelerates collapse
* The emission ultimately sets the final Ye of the core and therefore its
mass at bounce
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Neutronization Burst 0

>
e Recall neutrino processes during collapse phase, e-capture on €

protons was suppressed because lack of protons, even though the
cross section is quite high

e When the matter reaches
nuclear density and the
supernova shock forms, it
liberates the nucleons
from the nuclei

 Recently freed protons
now rapidly capture
electrons, produce v,
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Accretion Phase: Role of Neutrinos

* After the burst, v, and anti-v, emission is powered by accretion

e |nfalling matter is shock heated and then is cooled via neutrino emission
N P
. Charged current processes dominant production Vv
* Thermal production processes dominate at high
densities where neutrinos are trapped for seconds+

e e’

e After ~¥10-20ms, positron production no longer inhibited

N
* Thermal emission is dominant production process N b 3
for heavy lepton neutrinos as T is too low for / <~V
charged-current processes with u's and t’s V
N ot
N o
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Accretion Phase
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a0 32 Progenitors from Woosley & Heger (2007) O’Connor & Ott (2013)
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t — tpounce [MS] Pre-explosion!

* The accretion phase is first time we see significant progenitor dependence of luminosities
* High ‘compactness’ progenitors have higher mass accretion rates -> more
gravitational binding energy released -> higher neutrino luminosities

* Most common massive stars generally have low compactness, represented by red lines,
rarer, more massive (although not exclusively) stars have higher compactness (blue lines)
and higher neutrino luminosities
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Accretion Phase

 We use SNOwWGLOBES (Beck et al. 2011) to reconstruct the number of
interactions in a Super-K-like v detector for a 10 kpc supernova

103 EO and Ott (2013)
— ——— ————————

N Higher luminosities give
i SK @ 10kpc 1soo0 4 higher interaction rates
| lron core mass increasing ->
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* Small EOS dependence

HShen s40 * The early postbounce
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structure of the
progenitor star!
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Accretion Phase

* |f/when an explosion sets in, the accretion onto the central object slows/ceases

* This reduces the amount of gravitational energy that can be released as neutrinos and
the accretion component of the neutrino luminosity falls.

* Up until then, the luminosity follows 90 G’Connor & Couch (20.15)

the 1D prediction. Y4
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Tamborra et al.

IlceCube

Stationary Accretion Shock Instability

d SASI impact signal at lower order,
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Tamborra et al. (2014)
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Accretion Phase - LESA

Lepton number Emission Self-sustained
Asymmetry - LESA

Discovered in 3D runs of the Garching
group
e Develops within 150ms of bounce
* Creates a dipole in lepton number
* Results in observer-angle dependent
luminosity variations ~ 20%
e Direction is sustained

Stills need confirmation from other groups

Total luminosity show much smaller
variation with observer angle (~few %)

Measurements of both neutrino and
antineutrino luminosities important

Combination could lead to experimental

confirmation of LESA (need to confim)
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Black Hole Formation

<€

* Neutrino response in water, Liquid Argon Scintillator with

SNOwGLOBES o 32KT Water
— 40KT Argon

20KkT Scintillator

- 10 kpc 15| —— e

- Ignores collective oscillations
- Includes all SNOWGLOBES channels
- Dominated by:

- Water: Inverse 3 decay
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0,5 large enough to make MSW resonances adiabatic, small enough to ignore mixing
NH IH Dighe & Smirnov (2000)
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Horowitz et al. (2016) post-bounce (5)

How the protoneut
cools relays info abo
EOS -> traced by neut
emission

Variations in neutrino
luminosities and energies
can be detectable and help
constrain the nuclear EOS

Particularly, differences in

the <E> between v, and v, i
important and can impact
nucleosynthesis



Summary

 Neutrinos enable us to study the central engine of core-collapse
supernovae like no other probe can.

* Since they help drive the evolution of the central engine,
neutrinos can relay information on the structure, dynamics,

nuclear physics.

* Each species carries important and complementary info so we
need to measure them all!
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Neutronization

Sullivan et al. (2016)

» 550 QOO
e Other microphysics can alter &8
the neutronization burst 228 :§§?§
e Variation in electron capture f,; 400;
rates during collapse can % 350:
change the bounce-time = 300
structure and alter how fast the 'z’ 250+
neutrinos escape € 200
. 3 150- |
 Decreased rates give larger v
Inner core at bounce which is - /N -
pushed out faster -> neutrinos CTNAN ¥
escape faster 016757075 10 15 20 2530
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