New Mexico State University All About Discovery! nmsu.edu

The CAPTAIN Low-Energy Neutrino Physics Program

Robert L. Cooper New Mexico State University on behalf of the CAPTAIN Collaboration

CAPTAIN Physics Program

Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos

Low-Energy Program

- CC/NC argon cross sections at supernova neutrino energy regime
- Low-energy neutrino energy response / reconstruction efficiency
- Clear opportunity at stopped-pion neutrino source like SNS

Neutron Calibration

- Measure low-/medium-energy neutron response in LArTPC
- v_e oscillation backgrounds born from neutrino-induced or background neutrons, e.g., ${}^{40}\text{Ar}(n,\pi^0){}^{40}\text{Ar}^{(*)}$

Visible Energy at DUNE

- DUNE will see mixture of QE, RES, and DIS interactions
- *E_v* reconstruction via calorimetry (over kinematic reconstruction)
- Missing visible energy depends upon energy and v / v-bar Muon Neutrino
 Muon Anti-neutrino

Visible Energy at DUNE

Energy Reconstruction and Neutrons

- This simulation highlights that neutron final states are relatively unconstrained and could result in very large uncertainties
- It is clear that we need to understand neutron production better DUNE Neutrino Energy Spectrum
 Outgoing Energy to Neutrons

Delta-CP Biased by Missing Energy

- Noted in P. Huber's talk previously
- A.M. Ankowski et al., *Phys. Rev.* D92, 091301 (2015)
- It does not take "too much" neutron missing energy to significantly the reconstructed delta-CP

Existing Neutron-Argon Data (MeV+)

 Data is sparse at DUNE energies and existing data is from R.R. Winters et al., *Phys. Rev.* C43, 492 (1991) – www.nndc.bnl.gov

But How Bad Can Neutrons Be?

• MCNPX calculation of the neutron cross section up to 800 MeV

CAPTAIN

miniCAPTAIN

- Prototype 400-kg LArTC with 0.3 m drift and ~1000 channels
- $24 \times 6 \text{ cm}^2 \text{ PMTs}$
- MicroBooNE cold electronics

R.L. Cooper -- NuInt 2017

WORK DECK

CAPTAIN

- 5-ton instrumented LArTPC
- 2-m hexagonal ~2000-channel TPC with 3 mm pitch and 1 m drift
- Laser calibration systems with photon detection system

miniCAPTAIN

- Prototype 400-kg LArTC with 0.3 m drift and ~1000 channels
- $24 \times 6 \text{ cm}^2 \text{ PMTs}$
- MicroBooNE cold electronics

CAPTAIN

- 5-ton instrumented LArTPC
- 2-m hexagonal ~2000-channel TPC with 3 mm pitch and 1 m drift
- Laser calibration systems with photon detection system

miniCAPTAIN

- Prototype 400-kg LArTC with 0.3 m drift and ~1000 channels
- $24 \times 6 \text{ cm}^2 \text{ PMTs}$
- MicroBooNE cold electronics

CAPTAIN

- 5-ton instrumented LArTPC
- 2-m hexagonal ~2000-channel TPC with 3 mm pitch and 1 m drift
- Laser calibration systems with photon detection system

miniCAPTAIN

- Prototype 400-kg LArTC with 0.3 m drift and ~1000 channels
- $24 \times 6 \text{ cm}^2 \text{ PMTs}$
- MicroBooNE cold electronics

miniCAPTAIN WNR Neutron Run

- Los Alamos Neutron Science Center Weapons Neutron Research facility
- Time-of-flight tagged neutron source up to 800-MeV
- Raw spectrum matches cosmic rays BUT we require reduced neutron occupancy
- Clamp aperture → alters spectrum
- Modified spectrum requires flux measurement
- Physics run in 2 weeks!

miniCAPTAIN WNR Neutron Run

- Los Alamos Neutron Science Center Weapons Neutron Research facility
- Time-of-flight tagged neutron source up to 800-MeV
- Raw spectrum matches cosmic rays BUT we require reduced neutron occupancy
- Clamp aperture → alters spectrum
- Modified spectrum requires flux measurement
- Physics run in 2 weeks!

- Reconstructed neutron TOF spectrum altered from "raw" WNR spectrum
- Not corrected for flux
- Neutron energy from TOF relative to "prompt" gamma ray flash
- Light output vs. TOFtagged neutron energy

Time-of-Flight Spectrum

- Reconstructed neutron TOF spectrum altered from "raw" WNR spectrum
- Not corrected for flux
- Neutron energy from TOF relative to "prompt" gamma ray flash
- Light output vs. TOFtagged neutron energy

Reconstructed Neutron Energy

- Reconstructed neutron TOF spectrum altered from "raw" WNR spectrum
- Not corrected for flux
- Neutron energy from TOF relative to "prompt" gamma ray flash
- Light output vs. TOFtagged neutron energy

Improvements for Neutron Physics Run

- Significant improvement in LAr purification system
- Criotec liquid purification and recirculation system (similar to that used on ARGONTUBE arXiv:1304.6961)
- Stilbene scintillator implemented as a neutron flux monitor (easily crosscalibrated with other high-flux neutron monitors)

Improvements for Neutron Physics Run

- Significant improvement in LAr purification system
- Criotec liquid purification and recirculation system (similar to that used on ARGONTUBE arXiv:1304.6961)
- Stilbene scintillator implemented as a neutron flux monitor (easily crosscalibrated with other high-flux neutron monitors)

Shifting Gears to Low-Energy Program

Supernova Neutrinos at DUNE

 Demonstrated supernova neutrino detection capabilities a priority for (now) DUNE in P5

P5 recommendation:

"The (ELBNF) experiment should have the <u>demonstrated</u> capability to search for SN bursts..."

- Stopped-pion neutrino source has well-matched to supernova neutrino spectrum
- CC/NC cross sections are not measured in argon
- Devil is in the details

 Study low-energy neutrino interactions in LAr for SN detections in DUNE

 $\nu_e \operatorname{ArCC}: \qquad \nu_e + {}^{40} \operatorname{Ar} \rightarrow e^- + {}^{40} \operatorname{K}^*$ $\bar{\nu}_e \operatorname{ArCC}: \qquad \bar{\nu}_e + {}^{40} \operatorname{Ar} \rightarrow e^+ + {}^{40} \operatorname{Cl}^*$ $\operatorname{ES}: \qquad \nu_x + e^- \rightarrow \nu_x + e^ \nu_x \operatorname{ArNC}: \qquad \nu_x + {}^{40} \operatorname{Ar} \rightarrow {}^{40} \operatorname{Ar}^* + \gamma$

- Dominantly v_e interactions
- 1000s events anticipated in full-CAPTAIN
- Study de-excitation gamma rays and neutron emission

K. Scholberg, Ann. Rev. Nucl. Part. Sci. 62, 81 (2012), 1205.6003

 Study low-energy neutrino interactions in LAr for SN detections in DUNE

 $\nu_e \operatorname{ArCC}: \qquad \nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$ $\bar{\nu}_e \operatorname{ArCC}: \qquad \bar{\nu}_e + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^*$ $\operatorname{ES}: \qquad \nu_x + e^- \rightarrow \nu_x + e^ \nu_x \operatorname{ArNC}: \qquad \nu_x + {}^{40}Ar \rightarrow {}^{40}Ar^* + \gamma$

- Dominantly v_e interactions
- 1000s events anticipated in full-CAPTAIN
- Study de-excitation gamma rays and neutron emission

 Study low-energy neutrino interactions in LAr for SN detections in DUNE

 $\nu_e \operatorname{ArCC}: \qquad \nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$ $\bar{\nu}_e \operatorname{ArCC}: \qquad \bar{\nu}_e + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^*$ $\operatorname{ES}: \qquad \nu_x + e^- \rightarrow \nu_x + e^ \nu_x \operatorname{ArNC}: \qquad \nu_x + {}^{40}Ar \rightarrow {}^{40}Ar^* + \gamma$

- Dominantly v_e interactions
- 1000s events anticipated in full-CAPTAIN
- Study de-excitation gamma rays and **neutron emission**

 Study low-energy neutrino interactions in LAr for SN detections in DUNE

 $\nu_e \operatorname{ArCC}: \qquad \nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$ $\bar{\nu}_e \operatorname{ArCC}: \qquad \bar{\nu}_e + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^*$ $\operatorname{ES}: \qquad \nu_x + e^- \rightarrow \nu_x + e^ \nu_x \operatorname{ArNC}: \qquad \nu_x + {}^{40}Ar \rightarrow {}^{40}Ar^* + \gamma$

- Dominantly v_e interactions
- 1000s events anticipated in full-CAPTAIN
- Study de-excitation gamma rays and neutron emission

Expected counts per year in LAr at ORNL SNS

A. Bolozdynya et al. arXiv:1211.5199

CAPTAIN at Spallation Neutron Source

- ~1-GeV, ~1-MW proton beam on liquid Hg target at 60 Hz
- World's highest intensity stoppedpion source

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e}$$

 ~40 × 10⁶ v/cm²/s 20 m at SNS maximum power (1.4 MW)

ORNL SNS, e.g. a stopped-pion, lowenergy neutrino source

CAPTAIN at Spallation Neutron Source

- ~1-GeV, ~1-MW proton beam on liquid Hg target at 60 Hz
- World's highest intensity stoppedpion source

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e}$$

 ~40 × 10⁶ v/cm²/s 20 m at SNS maximum power (1.4 MW)

Can We Control Neutrons in DUNE?

I don't know

- I hope so
- Effort is underway

I think *The Who* said it best →

Conclusions

- CAPTAIN is a LArTPC program that is measuring neutron response relevant to DUNE at LANL WNR
- CAPTAIN will commission 2018 for a low-energy neutrino run at Oak Ridge SNS (soon after)
- Besides physics, CAPTAIN is a crucial testbed for DUNE technology (e.g., laser calibration)
- CAPTAIN invites you to join an exciting effort at the burgeoning SNS neutrino program; welcome new collaborators

Collaboration

- Alabama: Ion Stancu
- LBL: Craig Tull
- <u>BNL</u>: Hucheng Chen, Veljko Radeka, Craig Thorn
- <u>UC Davis</u>: Daine Danielson, Steven Gardiner, Emilja Pantic, Robert Svoboda
- LC Irvine: Jianming Bian, Scott Locke, Michael Smy
- <u>UC Los Angeles</u>: David Cline, Hanguo Wang
- UC San Diego: George Fuller
- <u>Hawaii</u>: Jelena Maricic, Marc Rosen, Yujing Sun
- Houston: Lisa Whitehead

Spokesperson: Christopher Mauger

- <u>LANL</u>: Elena Guardincerri, Nicolas Kamp, David Lee, William Louis, Geoff Mills, Jacqueline Mirabal-Martinez, Jason Medina, John Ramsey, Keith Rielage, Constantine Sinnis, Walter Sondheim, Charles Taylor, Richard Van de Water
- <u>New Mexico</u>: Michael Gold, Alexandre Mills, Brad Philipbar
- New Mexico State: Robert Cooper
- <u>University of Pennsylvania</u>: Connor Callahan, Jorge Chaves, Shannon Glavin, Avery Karlin, Christopher Mauger
- <u>Stony Brook</u>: Neha Dokania, Clark McGrew, Sergey Martynenko, Chiaki Yanagisawa

Deputy Spokesperson: Clark McGrew

But How Bad Can Neutrons Be?

• MCNPX calculation of the neutron cross section up to 800 MeV

WNR Pulse Structure Train of RF micropulses that build an RF 675 μs macropulse Single **PDS** "triggers" 1st Trigger from start of RF High multiplicity bunch event creates full system trigger 4 ms Gate 100MS/s 1M points (1) 1.00 V Ω (2) 500mV Ω (1.00ms 3 ℃ -160m 25 Feb 2016 06:30:16

Sample PMT Pulses

example event:

PDS4-TPC1-0

- Despite purity issues scintillation provides good data on neutron response
- Neutron energy from TOF relative to "prompt" gamma ray flash
- Light output vs. TOFtagged neutron energy

Reconstructed Neutron Energy

CAPTAIN at Spallation Neutron Source

- ~1-GeV, ~1-MW proton beam on liquid Hg target at 60 Hz
- World's highest intensity stoppedpion source

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e}$$

• $\sim 40 \times 10^6 \text{ v/cm}^2\text{/s} 20 \text{ m at SNS}$ maximum power (1.4 MW)

