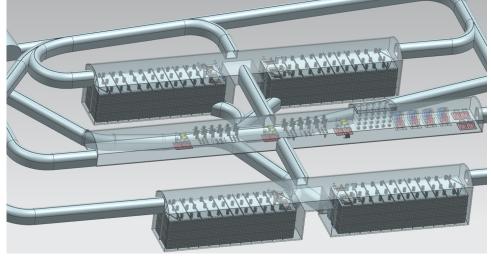
Simulating supernova neutrino events in


liquid argon

Steven Gardiner
University of California, Davis

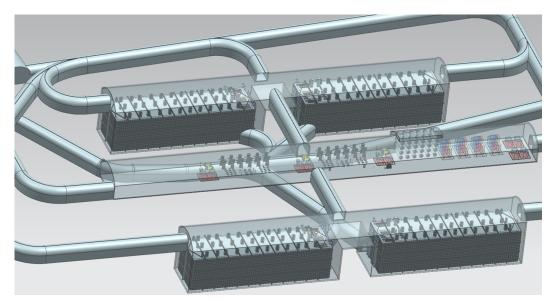
NuInt 2017
Toronto, Canada
30 June 2017

Outline

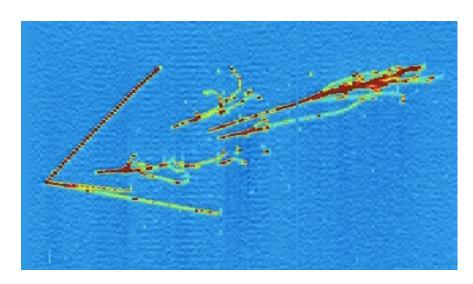
Motivation for argon-based supernova neutrino detectors

Event reconstruction challenges (why is this hard?)

- MARLEY: Model of Argon Reaction Low Energy Yields
 - Ingredients in our model
 - Example simulation results

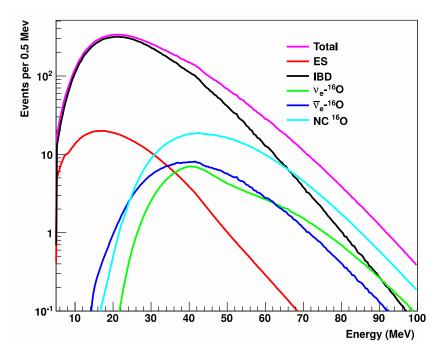

Current studies and future prospects

Why argon?


 Large water and liquid scintillator supernova neutrino detectors already exist

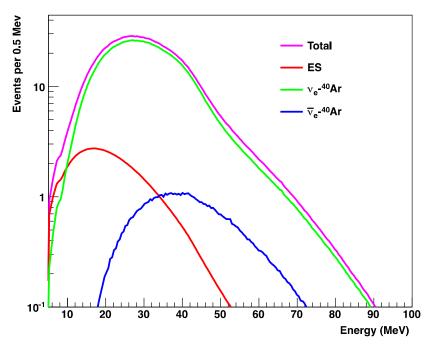
- Key statement from Evan O'Connor's talk this morning:
 - "Each species carries important and complementary info, so we need to measure them all"

Argon can help us obtain complementary information


DUNE far detector

ArgoNeuT event display

Water- and argon-based neutrino detectors have complementary sensitivities to SN neutrinos


100 kt Water Cherenkov Detector

Reaction		Events / 10 kt
(CC)	$ar{oldsymbol{ u}}_{f e}+{f p} ightarrow{f e}^++{f n}$	~2,000
(CC)	$ u_{ m e} + {}^{16}{ m O} ightarrow { m e}^- + {}^{16}{ m F}^*$	~20
(CC)	$\bar{\nu}_{e} + {}^{16}{}_{0} \rightarrow {}_{e}{}^{+} + {}^{16}{}_{N}{}^{*}$	~60
(NC)	$ u_{\!X} + {}^{16}{}_{O} ightarrow u_{\!X} + {}^{16}{}_{O}^*$	~50
(ES)	$ u_{\!X} + e^- ightarrow u_{\!X} + e^-$	~70

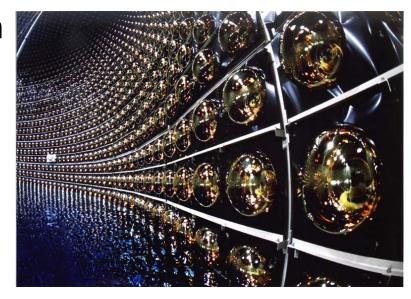
Estimates for SN at 10 kpc based on work by K. Scholberg

17 kt Liquid Argon Time Projection Chamber (LArTPC)

Reaction		Events / 10 kt
(CC)	$ u_{ m e} + {}^{ m 40}{ m Ar} ightarrow { m e}^- + {}^{ m 40}{ m K}^*$	~700
(CC)	$ar{ u}_{e}+{}^{40}\mathrm{Ar} ightarrow e^{+}+{}^{40}\mathrm{Cl}^{*}$	~60
(NC)	$ u_{\!\scriptscriptstyle \chi} + {}^{40}{}_{\!\scriptscriptstyle A}{}_{\scriptscriptstyle T} ightarrow u_{\!\scriptscriptstyle \chi} + {}^{40}{}_{\!\scriptscriptstyle A}{}_{\scriptscriptstyle T}^*$	~90
(ES)	$ u_{\!X} + \mathrm{e}^- ightarrow u_{\!X} + \mathrm{e}^-$	~85
Estimates for SN at 10 kpc based on work by K.		

Estimates for SN at 10 kpc based on work by K. Scholberg and A. Hayes

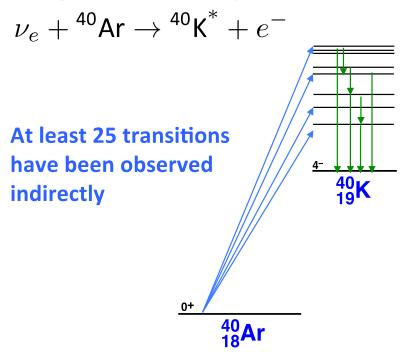
Supernova neutrino detection with water Cherenkov detectors


- Inverse beta decay is the dominant reaction
- Number of detected photons gives a positron energy measurement
- From there, reconstructing the antineutrino energy is straightforward

Reconstructing true antineutrino energy:

Outgoing Neutron proton e⁺ energy mass difference

Recoil energy of neutron (negligible)


$$E_{ar{
u}}=E_e+\Delta+K_{
m recoil}$$

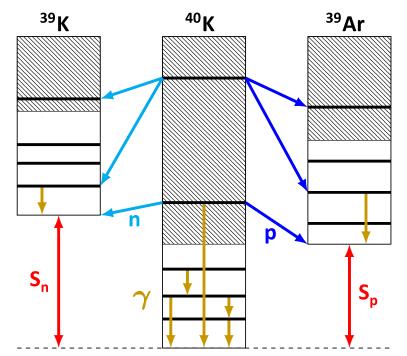
Supernova neutrino detection in liquid argon

Charged-current absorption:

Transition levels are determined by observing de-excitations (γ's and nucleons)

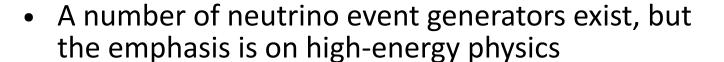
Transitions to particle-unbound levels occur with many competing de-excitation channels

Large uncertainties in nuclear data and models complicate energy reconstruction


Reconstructing true neutrino energy:

Q is determined by measuring deexcitation gammas and nucleons

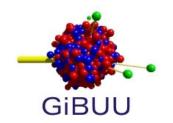
Energy donated to Outgoing transition e⁻ Energy


Recoil Energy of Nucleus (negligible)

$$E_{\nu} = E_e + Q + K_{\text{recoil}}$$

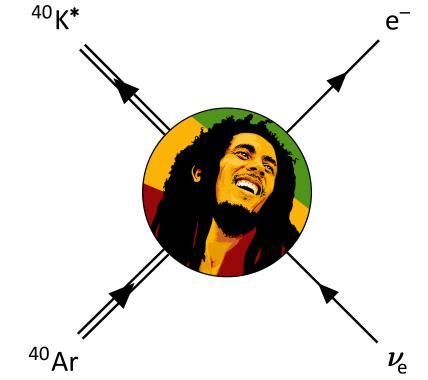
The need for a supernova neutrino simulation tool

Simulations are needed to understand LArTPC response to SN neutrinos



 In the low tens-of-MeV regime, nuclear structure details become quite important!

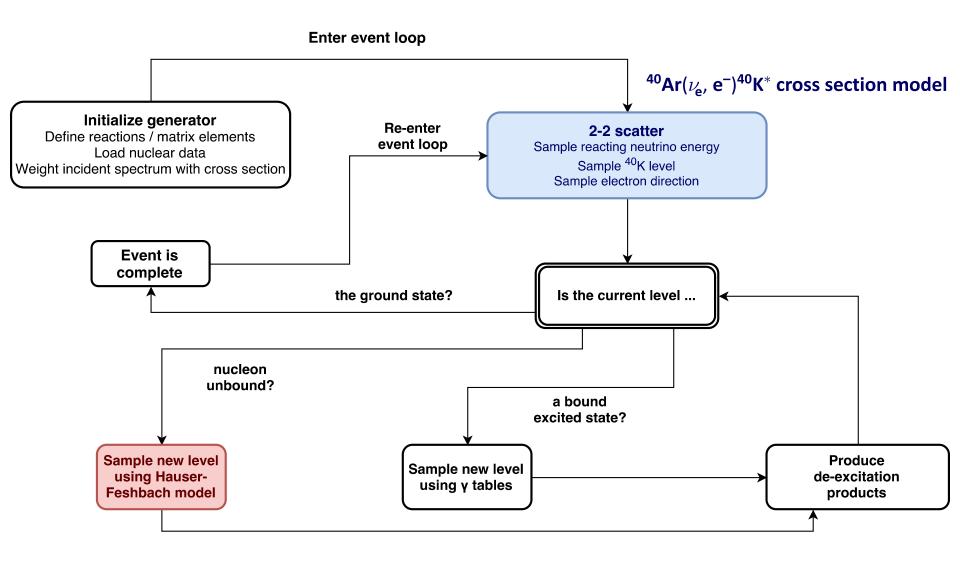
- We have developed a new generator to help us understand the response of ⁴⁰Ar to SN neutrinos
 - Nuclear data measurements (levels, gammas, matrix elements) can help us



MARLEY: Model of Argon Reaction Low-Energy Yields

- Event generator for supernova neutrinos on ⁴⁰Ar
- Current version does CC $\nu_{\rm e}$ (dominant channel)
- Framework allows adding new reactions, target nuclei, etc.
- In use by DUNE for SN simulations
- Also has users from several other liquid argon experiments

Model of Argon Reaction Low Energy Yields


Bob Marley illustration by Zero Anixter

Collaborators:

S. Gardiner, C. Grant,

E. Pantic, R. Svoboda

MARLEY event generation flowchart

Transmission coefficient model

MARLEY 40 Ar $(\nu_e, e^-)^{40}$ K * Cross Section Model

 $2 \rightarrow 2$ scattering differential cross section (in general)

$$\left. \frac{d\sigma}{d\Omega} \right|_{\mathrm{CM}} = \frac{1}{4\pi^2} \left[\frac{E_a E_b E_c E_d}{s} \right] \frac{|\mathbf{p_f}|}{|\mathbf{p_i}|} \left| \langle f | \, H_{\mathrm{int}} \, |i \rangle \right|^2$$

Low-energy CC interaction Hamiltonian

$$H_{\mathrm{int}}(\mathbf{r}) = \frac{\mathrm{G_F}}{\sqrt{2}} \left| \mathrm{V_{ud}} \right| J_{\mu}^{\dagger} L^{\mu}(\mathbf{r})$$

Leptonic matrix element

$$L^{\mu}(\mathbf{r}) = \bar{u}_{s_e} \gamma^{\mu} (1-\gamma_{\rm 5}) u_{s_{\nu_e}} e^{-i\mathbf{r}\cdot\mathbf{k}} = \ell^{\mu} \; e^{-i\mathbf{r}\cdot\mathbf{k}}$$

Nuclear current operator

$$J_{\mu} = \gamma_0 \left[g_{\mathrm{V}} \gamma_{\mu} + \frac{g_{\mathrm{M}}}{2 \mathrm{m_N}} i \sigma_{\! \mu \, \nu} k_{\nu} - g_{\mathrm{A}} \gamma_{\mu} \gamma_{\mathrm{5}} + \frac{g_{\mathrm{P}}}{\mathrm{m_P}} k_{\mu} \gamma_{\mathrm{5}} \right]$$

Momentum Transfer

$$k \equiv p_e - p_{\nu_e} = P_i - P_f$$

See Krmpotić, et al., Phys. Rev. C 71, 044319 (2005) for a full calculation.

MARLEY 40 Ar $(\nu_{e}, e^{-})^{40}$ K * Cross Section Model

So far, we've been working with the **allowed approximation** (low momentum transfer limit keeps the leading order terms)

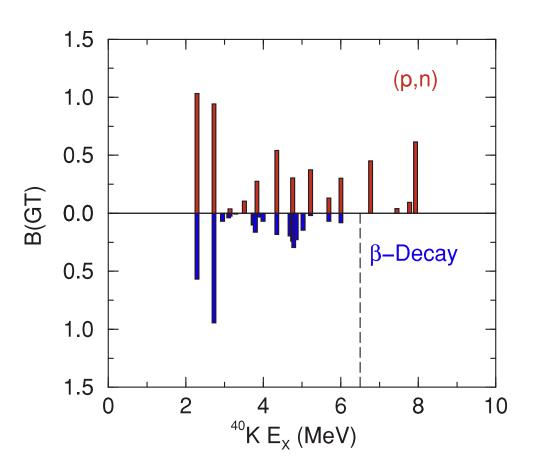
Measurements are available for the surviving terms, facilitating use with nuclear data. For supernova neutrinos, this should be a decent approximation.

$$\left|\left\langle f\right|H_{\mathrm{int}}\left|i\right\rangle\right|^{2}\approx\mathrm{G_{F}}\left|\mathrm{V_{ud}}\right|^{2}\left[\left(1+\beta_{\mathrm{e}}\cos\theta_{\mathrm{e}}\right)\mathrm{B}(\mathrm{F})+\left(\frac{3-\beta_{\mathrm{e}}\cos\theta_{\mathrm{e}}}{3}\right)\mathrm{B}(\mathrm{GT})\right]$$

where the Fermi and Gamow-Teller nuclear matrix elements are given by

$$\mathsf{B}(\mathsf{F}) \equiv g_\mathsf{V}^2 \frac{\left|\left\langle J_f \, T_f \, \| \, \tau_- \, \| \, J_i \, T_i \right\rangle\right|^2}{2J_i + 1} \quad \mathsf{B}(\mathsf{GT}) \equiv g_\mathsf{A}^2 \frac{\left|\left\langle J_f \, T_f \, \| \, \boldsymbol{\sigma} \tau_- \, \| \, J_i \, T_i \right\rangle\right|^2}{2J_i + 1}$$

Fermi transition is well-understood

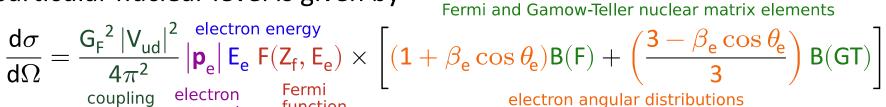

Gamow-Teller less so...

World's B(GT) data for ⁴⁰Ar

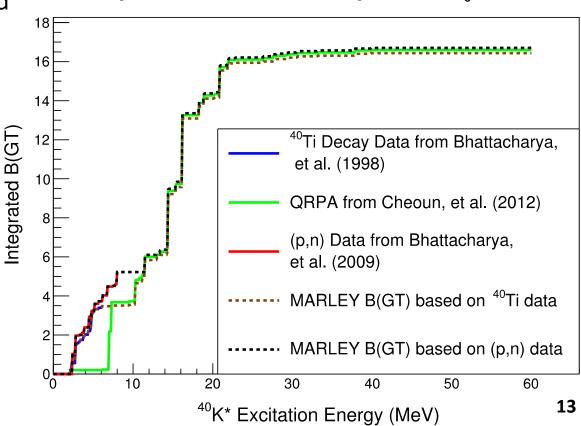
PHYSICAL REVIEW C 80, 055501 (2009)

Weak-interaction strength from charge-exchange reactions versus β decay in the A=40 isoquintet

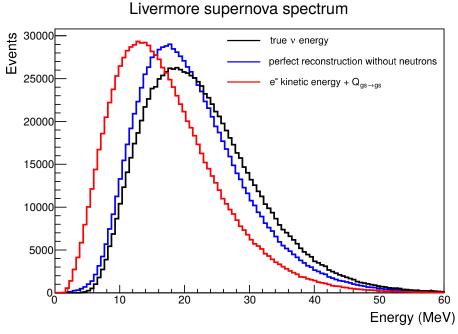
M. Bhattacharya, 1,2,* C. D. Goodman, and A. García



- Measurements using (p,n) scattering vs. ⁴⁰Ti beta decay show significant disagreements
- Hard to calculate and hard to measure!
- Karakoç, et al. Phys. Rev. C 89, 064313 (2014) refers to a third measurement that remains unpublished
- Must be supplemented by theory at higher energies

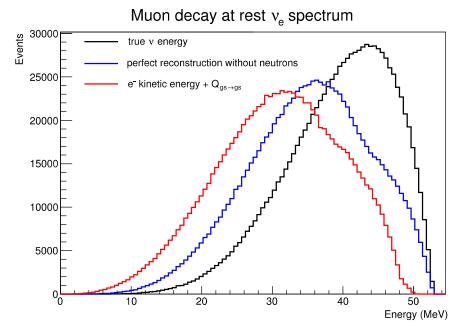

MARLEY ⁴⁰Ar(ν_e , e⁻)⁴⁰K* cross section model

 Under the allowed approximation, the differential cross section for a particular nuclear level is given by


- MARLEY uses tabulated B(F) and B(GT) values to compute cross sections
- Two-two scattering final states are sampled using this cross section
 - 1. 40K* excited level
 - 2. e energy
 - 3. e direction
- De-excitation of the final nucleus is simulated next

Integrated Gamow-Teller Strength for CC v_e on ⁴⁰Ar

MARLEY branching ratios for two different source spectra


⁴⁰K* de-excitations

• γ s only: 83.7%

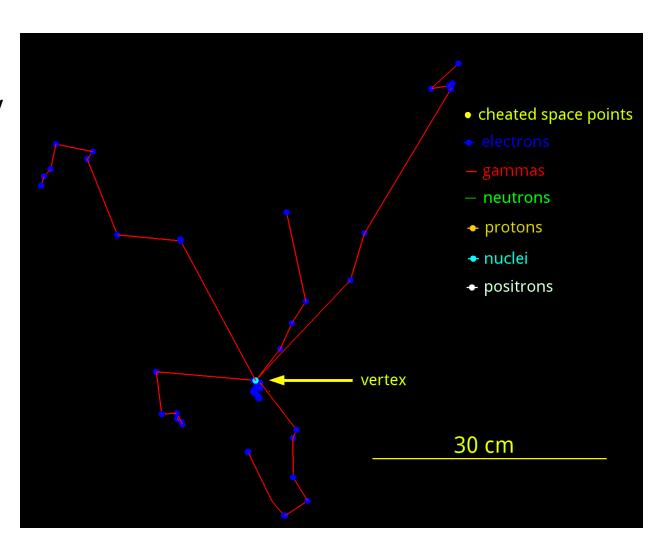
• single n + γ s: 14.6%

• single p + γ s: 1.5%

• other: 0.2%

⁴⁰K* de-excitations

• γs only: 58.0%

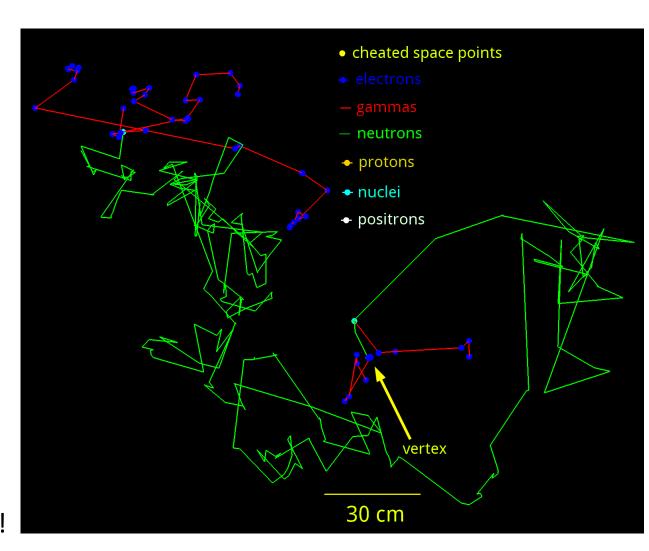

• single n + γ s: 36.3%

• single p + γ s: 4.6%

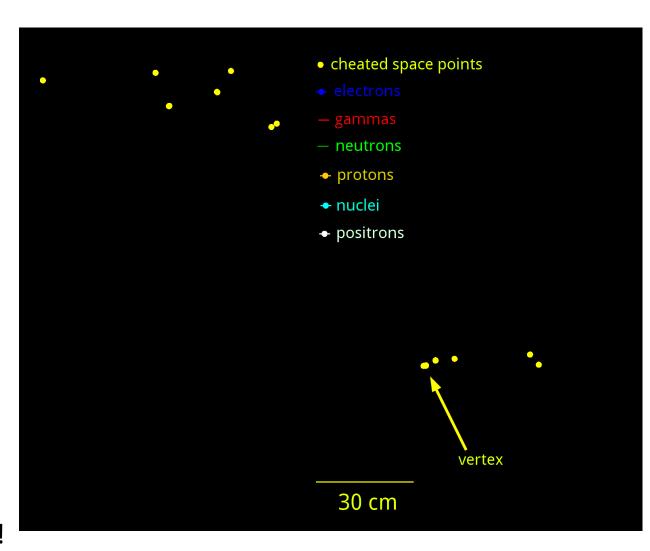
• other: 1.1%

Example $e^- + \gamma s$ Only Event (true trajectories)

- E_{ν} = 16.1 MeV
- e⁻ deposited 10.2 MeV
- γ s deposited 4.3 MeV
- ⁴⁰K deposited 3.7 keV
- Total visible energy:14.5 MeV
- Visible energy sphere radius:48.4 cm


Example $e^- + \gamma s$ Only Event (cheated reco)

- E_{ν} = 16.1 MeV
- e⁻ deposited 10.2 MeV
- γ s deposited 4.3 MeV
- ⁴⁰K deposited 3.7 keV
- Total visible energy:14.5 MeV
- Visible energy sphere radius:48.4 cm

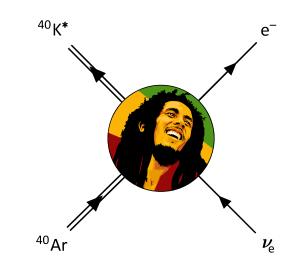

Example neutron event (true trajectories)

- E_{ν} = 16.3 MeV
- e⁻ deposited 4.5 MeV
- ³⁹K deposited 68 keV
- n deposited 7.6 MeV (mostly from capture γ s)
- Total visible energy:12.2 MeV
- Visible energy sphere radius:
 - 1.44 m
- Neutrons bounce around for a long time!

Example neutron event (cheated reco)

- E_{ν} = 16.3 MeV
- e⁻ deposited 4.5 MeV
- ³⁹K deposited 68 keV
- n deposited 7.6 MeV (mostly from capture γ s)
- Total visible energy:12.2 MeV
- Visible energy sphere radius:
 - 1.44 m
- Neutrons bounce around for a long time!

Current studies and future prospects

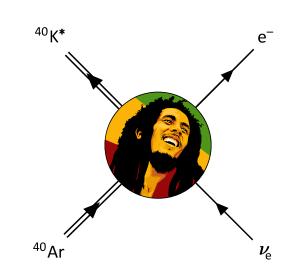

- MARLEY development is ongoing
 - Interfaces to other codes (e.g., LArSoft)
 - Physics improvements (your calculation could be here!)
 - Preparation of data for other reaction channels

- De-excitation vs. bremsstrahlung γ
- Nucleon emission tagging
- Event t0 determination
- SN triggering
- MC-based smearing matrix for SNOwGLoBES

• ACED: Argon Capture Experiment at DANCE

- Measurement of ⁴⁰Ar thermal neutron capture cross section and event-by-event gammas
- Addresses key uncertainties in liquid argon response to low energy neutrons
- First data this fall

Model of Argon Reaction Low Energy Yields



The **D**etector for **A**dvanced **N**eutron **C**apture **E**xperiments at Los Alamos

Conclusion

- LArTPCs provide complementary SN information to existing large detectors
- Nuclear effects in argon present a significant challenge for SN event reconstruction
- MARLEY is a new generator specifically targeting supernova neutrinos in ⁴⁰Ar
 - More input from the theory community can help us move beyond our simplified models
- A direct measurement of these cross sections would be very valuable!
 - See Robert Cooper's talk (up next) for one proposed experiment

Model of Argon Reaction Low Energy Yields

Backup

MARLEY transmission coefficient model

- Unbound states in MARLEY de-excite according to the Hauser-Feshbach model
 - W. Hauser and H. Feshbach, Physical Review 87, 366 (1952)
 - Successfully used for many years to describe nuclear cross sections
 - Work continues to refine the input parameters (e.g., RIPL-3)
 - Used in many SN neutrino theory papers (in combination with RPA, QRPA, etc.)
 - Two key assumptions: 1. compound nucleus 2. reciprocity theorem (time-reversal invariance)
- Final states are sampled using decay widths

Hauser-Feshbach partial decay width
$$\Gamma_{A \to \alpha + B} = \frac{1}{2\pi \rho_A(E_x, J, \Pi)} \sum_{\text{initial nuclear level density}} \int_{\text{initial nuclear level density}}^{\text{sum over possible}} \int_{\text{final nuclear level density}}^{\text{final nuclear level density}} \int_{\text{parity}}^{\text{transmission}} \int_{\text{coefficient}}^{\text{transmission}} \int_{\text{coefficient}}^{\text{transmissi$$

$$\frac{\mathbf{\delta_{\!\pi}}}{\mathbf{\delta_{\!\pi}}} = \begin{cases} 1 & \Pi = \pi_{\!\alpha} \Pi'(-1)^{\ell'} \\ 0 & \text{otherwise} \end{cases} \qquad P(A \to \alpha + B) = \frac{\Gamma_{\!A \to \alpha + B}}{\Gamma_{\!A}}$$

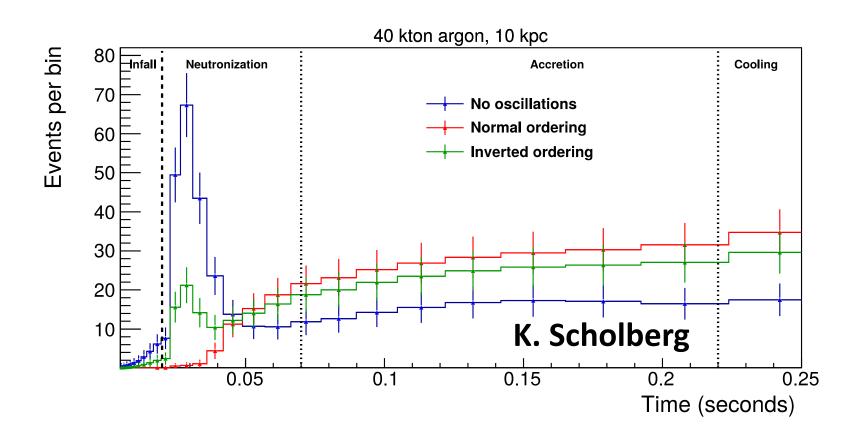
MARLEY transmission coefficient model

Nuclear potential from Koning & Delaroche global optical model

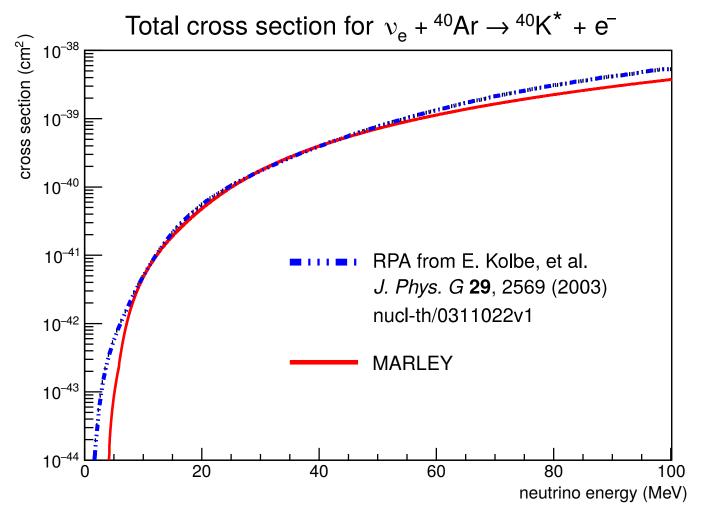
A. J. Koning and J. P. Delaroche, *Nuclear Physics A* **713** 3-4 (2003)

$$\mathcal{U} = \mathcal{V}_V + i\mathcal{W}_V + i\mathcal{W}_D + \mathcal{V}_{SO} + i\mathcal{W}_{SO} + \mathcal{V}_C$$

Solve radial Schrödinger equation numerically in matching region

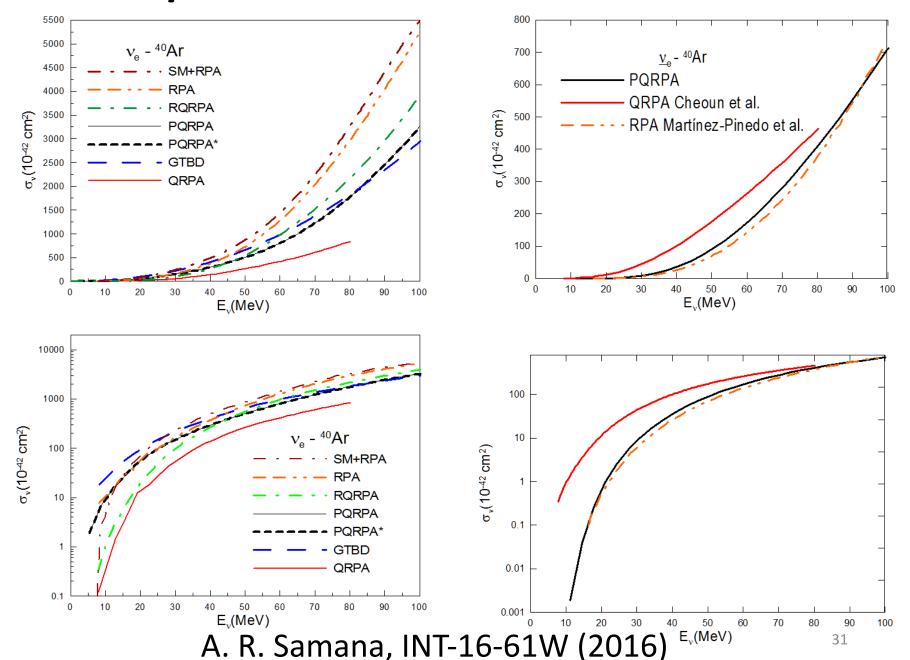

$$\left[\frac{d^2}{dr^2} - \frac{\ell'(\ell'+1)}{r^2} + k^2 - \frac{2\mu}{\hbar^2} \mathcal{U} \right] u_{\ell'j'}(r) = 0$$

• Match to asymptotic solution, extract transmission coefficient

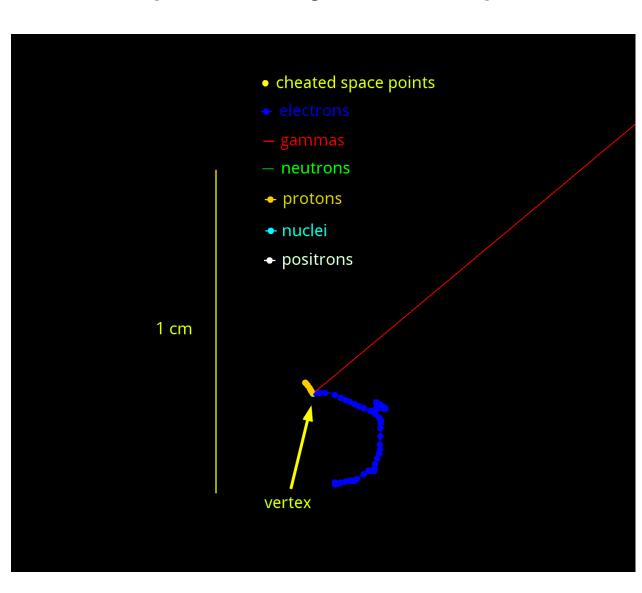

$$\lim_{r \to \infty} u_{\ell'j'}(r) = \frac{i}{2} \left[H_{\ell'}^-(k,r) - S_{\ell'j'} H_{\ell'}^+(k,r) \right]$$

$$T_{\ell'j'}=1-|S_{\ell'j'}|^2$$
 Transmission coefficient represents the probability of penetrating the nuclear surface

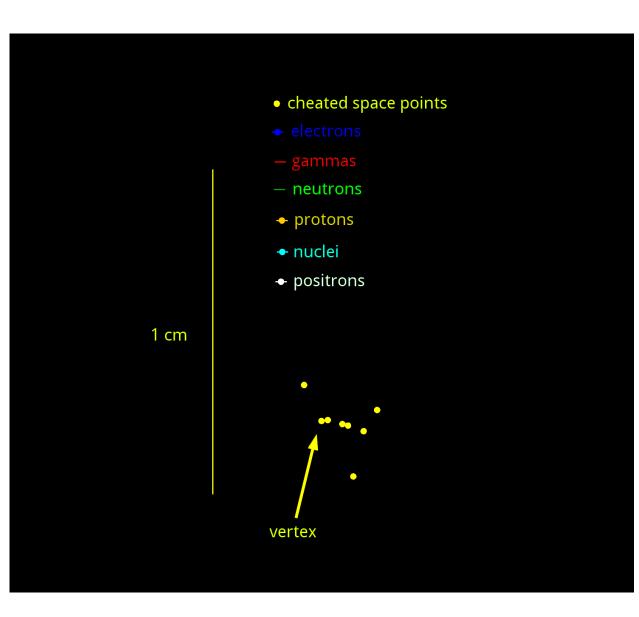
An example: mass ordering from the neutronization burst



MARLEY's cross section agrees with similar calculations over much of the relevant energy range


- Low energies = forbidden transitions make a small contribution below MARLEY's hard cutoff
- High energies = forbidden transitions start to dominate near 100 MeV

Neutrino/antineutrino cross sections ⁴⁰Ar


Example proton event (true trajectories)

- E_{ν} = 17.8 MeV
- e⁻ deposited 1.9 MeV
- ullet γ deposited 1.3 MeV
- ³⁹Ar deposited 170 keV
- p deposited 5.4 MeV
- Total visible energy:8.7 MeV
- Visible energy sphere radius:34 cm
- Protons leave a "stub" on the electron track
- Big error on E_{ν} if you miss them!

Example proton event (cheated reco)

- E_{ν} = 17.8 MeV
- e⁻ deposited 1.9 MeV
- γ deposited 1.3 MeV
- ³⁹Ar deposited 170 keV
- p deposited 5.4 MeV
- Total visible energy:8.7 MeV
- Visible energy sphere radius:34 cm
- Protons leave a "stub" on the electron track
- Big error on E_{ν} if you miss them!

