Electron Scattering with the SuperScaling Approach

Application to neutrinos

Juan Antonio Caballero

Departamento de Física Atómica, Molecular y Nuclear Universidad de Sevilla

NuInt 2017: 11th International Workshop on Neutrino-Nucleus Scattering in the Few-GeV Region

Fields Institute, University of Toronto, 25 – 30 June, 2017

OUTLINE

ELECTRON SCATTERING:

- Scaling Ideas: the Superscaling Approach (SuSA)
- The Relativistic Impulse Approximation (RIA)
- Meson Exchange Currents & Inelastic Processes
- The SuSAv2-MEC Model: comparison with data

APPLICATION TO NEUTRINO SCATTERING REACTIONS:

- Validity of SuperScaling Approach within the RMF
- Application to CC processes: MiniBooNE, NOMAD, MinerVa, T2K
- SUMMARY & CONCLUSIONS

LET'S LOOK AT QE (e, e') DATA

WHAT ARE THEY SHOWING US?

Experimental scaling function:

$$F(q,y) = \frac{[d\sigma/d\omega d\Omega']_{exp}}{\overline{\sigma}_{eN}(q,\omega;p=-y,\varepsilon=0)}$$

$$\overline{\sigma}_{eN}(q,\omega;p,\varepsilon) \equiv \frac{1}{2\pi} \int d\phi_N \frac{E_N}{q} \left[Z \sigma_{ep}(q,\omega;p,\varepsilon,\phi_N) + N \sigma_{en}(q,\omega;p,\varepsilon,\phi_N) \right]$$

Experimental scaling function:

$$F(q,y) = \frac{[d\sigma/d\omega d\Omega']_{exp}}{\overline{\sigma}_{eN}(q,\omega;p=-y,\varepsilon=0)}$$

$$\overline{\sigma}_{eN}(q,\omega;p,\varepsilon) \equiv \frac{1}{2\pi} \int d\phi_N \frac{E_N}{q} \left[Z \sigma_{ep}(q,\omega;p,\varepsilon,\phi_N) + N \sigma_{en}(q,\omega;p,\varepsilon,\phi_N) \right]$$

Experimental scaling function:

$$F(q,y) = \frac{[d\sigma/d\omega d\Omega']_{exp}}{\overline{\sigma}_{eN}(q,\omega;p=-y,\varepsilon=0)}$$

$$\overline{\sigma}_{eN}(q,\omega;p,\varepsilon) \equiv \frac{1}{2\pi} \int d\phi_N \frac{E_N}{q} \left[Z \sigma_{ep}(q,\omega;p,\varepsilon,\phi_N) + N \sigma_{en}(q,\omega;p,\varepsilon,\phi_N) \right]$$

Scaling of the first kind: $q \to \infty \Longrightarrow | F(q, y) \longrightarrow F(y) \equiv F(\infty, y) |$

What are QE (e, e') data showing us? Cross sections

What are QE (e, e') data showing us? Cross sections

SUPERSCALING: analysis of data and L/T separation

$$f(q,\psi) \equiv k_F \frac{[d\sigma/d\omega d\Omega_e]}{\sigma_M \left[v_L G^L + v_T G^T \right]}, \quad f^L(q,\psi) \equiv k_F \frac{R^L(q,\omega)}{G^L}, \quad f^T(q,\psi) \equiv k_F \frac{R^T(q,\omega)}{G^T}$$

- Scaling of the first kind: $f_{exp}(q,\psi) \xrightarrow{q \to \infty} f_{exp}(\psi); \quad \psi \approx y/k_F superscaling variable$
- Scaling of the second kind: $f_{exp}(\psi)$ independence on the nuclear system

SUPERSCALING

• Scaling of the zeroth kind: $f_{exp}(q, \psi) = f_{exp}^L(q, \psi) = f_{exp}^T(q, \psi)$

SUPERSCALING: analysis of data and L/T separation

$$f(q,\psi) \equiv k_F \frac{[d\sigma/d\omega d\Omega_e]}{\sigma_M \left[v_L G^L + v_T G^T \right]}, \quad f^L(q,\psi) \equiv k_F \frac{R^L(q,\omega)}{G^L}, \quad f^T(q,\psi) \equiv k_F \frac{R^T(q,\omega)}{G^T}$$

- Scaling of the first kind: $f_{exp}(q,\psi) \stackrel{q \to \infty}{\longrightarrow} f_{exp}(\psi); \ \psi \approx y/k_F$ superscaling variable
- Scaling of the second kind: $f_{exp}(\psi)$ independence on the nuclear system

SUPERSCALING

• Scaling of the zeroth kind: $f_{exp}(q, \psi) = f_{exp}^L(q, \psi) = f_{exp}^T(q, \psi)$

The SuperScaling Approach (SuSA)

- Scaling of the first kind below the QE peak ($\psi \leq 0$)
- Excellent scaling of the second kind in the same region
- Breaking of scaling above the QE peak ($\psi > 0$) \Longrightarrow Effects beyond the IA (mainly located in the T channel)

LONGITUDINAL RESPONSE SUPERSCALES

The SuperScaling Approach (SuSA)

The model: Relativistic Impulse Approximation (RIA)

Nuclear Current \Longrightarrow One-body operator $J_N^{\mu}(\omega, \vec{q}) = \int d\vec{p} \ \overline{\Psi}_F(\vec{p} + \vec{q}) \hat{J}_N^{\mu} \Psi_B(\vec{p})$

Scattering off a nucleus \implies incoherent sum of single-nucleon scattering

processes

Ingredients in RIA: nucleon w.f. & current operator

Solutions of Dirac equation with phenomenological relativistic potentials

- Ψ_B : Bound nucleon w.f. \Longrightarrow Relativistic Mean Field (RMF)
- Ψ_F : Ejected nucleon w.f. \Longrightarrow Final State Interactions (FSI)

$\mathsf{RMF} \Leftrightarrow \mathsf{rROP} \Leftrightarrow \mathsf{RPWIA} \Leftrightarrow \mathsf{RGFA}$

Ingredients in RIA: nucleon w.f. & current operator

Solutions of Dirac equation with phenomenological relativistic potentials

- Ψ_B : Bound nucleon w.f. \Longrightarrow Relativistic Mean Field (RMF)
- Ψ_F : Ejected nucleon w.f. \implies Final State Interactions (FSI)

$\mathbf{RMF} \Leftrightarrow \mathbf{rROP} \Leftrightarrow \mathbf{RPWIA} \Leftrightarrow \mathbf{RGFA}$

• Electromagnetic current: (e, e')

$$\hat{J}_{cc1}^{\mu} = (F_1 + F_2)\gamma^{\mu} - \frac{F_2}{2m_N}(\overline{P} + P_N)^{\mu}$$
$$\hat{J}_{cc2}^{\mu} = F_1\gamma^{\mu} + \frac{iF_2}{2m_N}\sigma^{\mu\nu}Q_{\nu}$$

Off-shell & Gauge ambiguities ($Q_{\mu}J^{\mu} \neq 0$)

How Scaling of the 1^{er} kind behaves (RMF)

Scaling of the second kind in RIA

Scaling of 2^a kind: excellent with the CC2 current operator

RMF: Comparison with (e, e') data

Only the description of FSI provided by RMF leads to an asymmetric function $f(\psi')$ in accordance with the behavior shown by data. Moreover, $f_T > f_L$

Asymmetry in the RMF approach

Scaling of the 0^{th} kind in RMF: T enhancement

Scaling in QE L/T-channels

Scaling in QE L/T-channels

Present SuSA

Based on the superscaling function extracted from QE electron-nucleus scattering data.

Longitudinal

Description of nuclear responses built only on the longitudinal scaling function. Assumption of $f_L(\psi) \approx f_T(\psi)$, scaling of 0^{th} kind.

Isoscalar + Isovector Structure

The scaling function based on QE electron scattering data takes into account isovector and isoscalar currents to describe the interaction between the electron and the nucleus.

SuSAv2

 The Relativistic Mean Field model (RMF) is employed to improve the data analysis, where RMF accounts for FSI.

Longitudinal + Transversal

Differences between transverse and longitudinal scaling functions are introduced in order to describe properly the nuclear responses.

Isovector structure

. . .

We separate the scaling function into isovector and isoscalar structure so as to employ a purely isovector scaling function for CCQE neutrino-nucleus processes where isospin changes.

How Scaling of the 1^{er} kind behaves. RMF vs RPWIA

How Scaling of the 1^{er} kind behaves. RMF vs RPWIA

RMF \implies low-intermediate q**RPWIA** \implies higher q values

New SuSAv2 approach: combination of RMF and RPWIA scaling functions

RMF/RPWIA transition: PRD 94, 013012 (2016)

RMF ⇒ FSI between the outgoing nucleon and the residual nucleus ⇒ low-intermediate q
RPWIA ⇒ outgoing nucleon as a relativistic plane wave ⇒ higher q values (negligible FSI)

 SuperScaling Approach as a combination of RMF and RPWIA scaling functions by using a transition parameter q₀(q)

SuSAv2 extended to the inelastic region

SuSAv2-MEC: QE + 2p-2h MEC + Inelastic

"MEC"

"correlations" and " Δ -MEC"

Application to inclusive electron scattering processes

MEC calculation based on the Relativistic Fermi Gas

Inclusive electron scattering: SuSAv2-MEC

Inclusive ${}^{12}C(e, e')$ cross sections

PRD 94, 013012 (2016)

Inclusive ¹²C(e, e') cross sections PRD 94, 013012 (2016)

APPLICATION TO NEUTRINO-NUCLEUS REACTIONS

RELATIVISTIC IMPULSE APPROXIMATION

- Incident neutrino interacts with only one nucleon which is then emitted, while the (A 1) remaining nucleons are simply spectators.
- The weak nuclear current is the sum of single nucleon currents.
- Target and residual nuclei can be adequately described within an independent particle model.

Weak single-nucleon current operator

$$\hat{J}^{\mu}_{wsn} = \hat{J}^{\mu}_{V} - \hat{J}^{\mu}_{A} = \tilde{F}_{1}\gamma^{\mu} + \frac{i\tilde{F}_{2}}{2m_{N}}\sigma^{\mu\nu}Q_{\nu} + G_{A}\gamma^{\mu}\gamma^{5} + \frac{G_{P}}{2m_{N}}Q^{\mu}\gamma^{5}$$

- Neutral Currents: Strangeness content in $\tilde{G}_{E,M,A}$ and dependence with Weinberg angle (no G_P)
- Charge-changing Currents: Pure isovector form factors $\tilde{F}_i^V = (F_i^p F_i^n)$

RIA & SR approximations. FSI effects

Scaling: (e, e') vs (ν, μ) . SuSA vs RMF

Basic result: the function $f(\psi)$ evaluated for (ν, μ) processes agrees better with the contribution $f_L(\psi)$ [corresponding to (e, e')] than with $f_T(\psi)$.

COMPARISON WITH DATA:

MiniBooNE, Miner ν A, NOMAD & T2K

Flux-averaged double-differential CCQE: SuSA & RMF

MiniBooNE & NOMAD: SuSA vs RMF

MiniBooNE & NOMAD: SuSA vs RMF

SuSAv2-MEC: QE + 2p-2h MEC

"MEC"

"correlations" and " Δ -MEC"

Application to CC neutrino scattering processes

Integrated cross section: 2p-2h effects

Integrated cross section: 2p-2h effects

Flux-averaged double-differential CCQE- ν_{μ} & $\overline{\nu}_{\mu}$

Flux-averaged double-differential CCQE- ν_{μ} & $\overline{\nu}_{\mu}$

MINER ν **A: case of** ν_{μ}

MINER ν **A: case of** ν_e

T2K experiment: \triangle -contribution

SUMMARY

- The RIA/RMF describes in a reasonable way QE (e, e') data, satisfying scaling behavior and providing an asymmetric superscaling L function in accordance with data.
- Contrary to most NR/SR models (likewise RFG), RMF violates scaling of zeroth order, i.e., $f_T > f_L$. This seems to be consistent with (e, e') data analysis.
- RMF applied to neutrino scattering also satisfies scaling/superscaling properties.
- RMF in agreement with SuSA and provides the basis for the new SuSAv2 approach.
- SuSAv2 extended to the inelastic region + 2p2h MEC \implies excellent description of (e, e') data.
- SuSAv2-MEC applied to neutrino reactions describes properly MiniBooNE, MinerVa and T2K data. Significant enhancement due to 2p2h-MEC.

COLLABORATION

- R. González-Jiménez, G. Megías Universidad de Sevilla
- J.E. Amaro, I. Ruíz Simo Universidad de Granada
- M.B. Barbaro Universitá di Torino
- **T.W. Donnelly, C.F. Williamson**, *Massachusetts Institute of Technology*
- M.C. Martínez, E. Moya, J.M. Udías, Universidad Complutense de Madrid

Juan Antonio Caballero (06/26/17)