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2T2K (TOKAI TO KAMIOKA) EXPERIMENT



3Search for Leptonic CP Violation

▸ T2K Phase-II will be sensitive to maximal CP violation at the 3   
level.

▸ Hyper-K will be sensitive at 5   over a range of values of       .

▸ Future long baseline experiments will be limited by systematic 
rather than statistical uncertainties.

T2K-II

HYPER-K

3% 
UNCERTAINTY

ASSUMED



4Measuring Neutrino Energy

▸ Multi-nucleon effects make 

it difficult to reconstruct 

neutrino energy 

▸ Can lead to biases in osc.

analyses

J. Nieves, I. Ruiz Simo, and M.J. Vicente Vacas, PRC 83:045501 (2011)
M. Martini, M. Ericson, G. Chanfray and J. Marteau, PRC 80:065501 (2009)

Reminder of Teppei's remark – 
 no nearly mono-energetic neutrino 
 beam to study multi-nucleon 
effects as done in electron 
scattering



5E61 Experiment Setup

▸ nuPRISM + TITUS merged into new E61 Collaboration with new ICA

▸ Initial spokespeople: Mark Hartz, Mike Wilking

▸ Project Manager: Masaki Ishitsuka + Executive Committee: Francesca Di Lodovico

▸ An intermediate distance water Cherenkov detector with Gd loading

▸ 50 m tall, 8m diameter , movable instrumented portion 

▸ ID: 10m tall, 8m diam., OD: 14m tall, 10m diameter

Surface
Detector   E61



6The E61 Experiment Features
▸ An intermediate water Cherenkov detector 

▸ Same nuclear target and acceptance as the far detector.

▸ Smaller near to far extrapolation systematic.

▸ Spans 1-4 degrees from the 
neutrino beam axis.

▸ Probes neutrino energy vs 
final state kinematics 
relationship.

▸ Gd loading to measure 
neutron production.

▸ multi-PMT concept for 
photonsensor allows finer 
granularity detection



7E61 Concept

V 

BEAM

1o

1o

1o

-0.5

+1.0

-0.2

▸ Take linear 
combinations of 
60 different off-
axis angle slices.



8Off-Axis Linear Combinations



9Muon Neutrino Disappearance

▸ Red: Directly measured E61 events in far detector prediction.

▸ Green: Non-CC  background subtracted at E61 and re-added at SK – expect significant 0�
reduction in systematic uncertainties

▸ With matched fluxes:

▸ E61 linear combination event rate the same as oscillated SK event rate.

▸ Directly compare E61 measurement to observed SK events to obtain oscillation 
parameters.

▸ E61 and SK have the same interaction material - same interaction cross-section.

▸ No cross-section model, no effect from wrong model choice.

Measured E61 event rate:

SK expected event rate:
soon to be
updated

  E61 



10Pseudo-monochromatic Beams

▸ Simulated energy distribution (true left, reconstructed right) for single muon 
candidates after applying the 1.2 GeV linear coefficients.

▸ Separation of QE and non-QE (including multi-nucleon) scatters.

▸ Directly predict the effect of non-QE scatters in oscillation measurements 
and provide a unique constraint on nuclear models.

▸ Cross-sections as function of true neutrino energy.

▸ Measure vs true observables Q2 and ω - variables controlling interaction 
mode.
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▸ Allows us to demonstrate 
detector/calibration precision.

▸ Provides a test detector for Hyper-K R&D.

▸ Physics goals:

▸ Measure                    goal ~3% precision.

▸ Expect ~3300 νe events below 1 GeV in 
1x1021 POT with 76% purity.

▸ Gd loading: n multiplicities in νN

▸ A range of locations being studied.

Phase 0 – instrument portion near ND280

6
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12Phase 0 ν
e 
sample 

For 1021 POT, E
rec

 < 1 GeV

work in
progress

only 4.7 and 
8.5 degree
good for
cross-section
measurement

Figure and table
from M. Scott

Gamma bg from 
J. Walker



13Multi-PMT (MPMT) R&D
▸ Modular approach to PMT instrumentation.

▸ Array of small (~3’’) PMTs instead of large one

▸ Improved timing resolution → vertexing

▸ Waterproofing, pressure protection, reduced 
cabling.

▸ Readout electronics, monitoring, calibration 
devices located in vessel.

▸ Directional information – improves 
reconstruction ability

▸ Leveraging KM3NeT/IceCube mPMT design.

▸ Mechanical design (TRIUMF, Toronto).

▸ Optical characterisation of PMTs, acrylic, etc. 
(Toronto, York, Alberta, TRIUMF).

▸ Electronics development (TRIUMF, Warsaw UT, 
Michigan State) .

▸ Ongoing studies of support structure, acrylic vessel 
engineering, reflector assembly, optical gel, etc.



14Gd loading

▸ Based on successes of ANNIE and EGADS

▸ Super-K will have Gd loading, so studies with near detector are important

▸ Statistical separation of ν and ν events will be possible

▸ FSI will complicate this simple picture

▸ but can measure number of neutrons produced in ν interactions on water + 
Gd



15neutron signal in surface detector

Plots and capture
numbers from
N. Prouse



16Project Status

▸ J-PARC PAC Stage 1 status granted in July, 2016.

▸ Stage 2 requires Technical Design Report - aim to complete by November 
2017.

▸ First chance for full approval at the January 2018 PAC meeting.

▸ Plan to take 2 years of Phase 0 data starting 2021.

▸ Phase 0 start driven by mPMT development and construction.

▸ Aim to take Phase 1 data ~3 years after Phase 0 start.

▸ Data taking for last 2-3 years of T2K-II run.

  E61 

  E61 



17Conclusions
▸ E61 collaboration newly formed from nuPRISM and TITUS

▸ An off-axis angle spanning water Cherenkov detector with Gd for 
neutron tagging

▸ E61 detector will help reduce model dependence on future 
oscillation experiments

▸ Measure effect of different neutrino interaction models using 
pseudo mono-energetic beams to feed back to neutrino 
interaction community

Thanks!

And enjoy the rest
of your stay in...



18The End



19E61 Off Axis Concept

V 

BEAM

1o

2.5o

4o



20Muon Neutrino Disappearance

▸ Instead of monochromatic beams, use a linear combination to produce an 
oscillated flux.

▸ Can reproduce oscillated flux between ~400 MeV and 1.2 GeV.

▸ Directly measure muon p-theta for given oscillation parameters.

▸ For each oscillation hypothesis we want to test, we find a linear 
combination of the E61 off-axis fluxes to give the oscillated spectrum.



21Phase 0 ν
e
/ν

μ
 cross-section err for 4x1021

work in
progress

work in
progresswork in

progress

● likelihood fit to ν
e
 and ν

μ

● used correlated flux uncertainty
● one independent parameter for 

each bin in ν
e
 p, cos θ 

Total uncertainty Statistical uncertainty

systematic 
uncertainty
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 Three rotation angles (θ12, θ13, θ23)
 Two mass splittings known

 “ordering” still unknown
 One complex Dirac phase δ

“standard” parametrization
sij = sin θij

cij = cos θij

Mixing of Three Neutrinos



23neutron background studies underway

slide from
N. Prouse

Studies of backgrounds, using GEANT4 are underway
Measurements of neutrons with 3He detector at J-PARC planned



24Current T2K Systematic Errors

▸ CP violation measurement depends on uncertainty of            ratio.

▸ Dominant uncertainties:

▸ Final state interactions (FSI) and secondary interactions (SI) - nuclear model 
extrapolated from pion-nucleus scattering experiments.

▸ Electron/muon neutrino cross-section ratio - need data in energy range of 
interest, low statistics and large background for electron samples.

▸ ND280 flux + cross-section constraint - affected by nuclear model 
uncertainties.

▸ Systematic uncertainty at the 6% level. Need reduction to ~3% level for Hyper-K.



25Multi-Nucleon Models

▸ Many different theoretical models.

▸ Martini et al. and Nieves et al. calculations are both consistent with 
MiniBooNE data within the MiniBooNE flux uncertainties.

▸ The np-nh contributions can differ by a factor of 2 in the region of interest.

▸ Predict different rates for neutrinos vs anti-neutrinos.

▸ Hard to separate models experimentally.

M. Martini 
NuFACT 2015

Martini et 
al.

Nieves et 
al.



26Near Detector Constraint
▸ Oscillations result in different fluxes at the near and far detectors.

▸ Causes issues constraining interaction model that predicts far detector event 
rates.

▸ Detectors measure convolution of neutrino flux with interaction model.

▸ Measurement of near detector does not directly constrain far detector event 
rate.

▸ Smearing of neutrino energy a relatively small effect at the near detector but 
significantly impacts measurement of oscillation parameters.

▸ Different acceptances causes further issues.



27Multi-nucleon Cross-section Modelling
▸ T2K study of                uncertainty 

from mis-modelling the 2p-2h part 
of the cross-section found a 
significant bias and uncertainty.

▸ Same study is carried out using 
NuPRISM near detector fit.

▸ SK event rate is accurately 
predicted even with additional 2p-
2h interactions added to the toy 
data.

▸ The                bias and uncertainty 
are reduced to ~1% with the 
NuPRISM measurement.

▸ NuPRISM analysis largely 
independent of cross-section 
model.Nieves:

Bias < 0.1%
RMS = 1.1%

Martini:
Bias < 0.1%
RMS = 1.2%

T2K 
analysis

NuPRISM 
analysis
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