

Accelerator Neutrino Neutron Interaction Experiment

Marcus O'Flaherty, University of Sheffield UK on behalf of the ANNIE Collaboration

Who is Annie?

- Fermi National Accelerator Laboratory
- Lawrence Livermore National Laboratory
- Iowa State University
- Ohio State University
- Queen Mary University of London

- University of California at Berkeley
- University of California at Davis
- University of California at Irvine
- University of Chicago, Enrico Fermi Institute
- University of Edinburgh
- University of Sheffield

What is ANNIE?

- 26 ton Gd-loaded water Cherenkov detector
- Upstream veto
- Downstream Muon Range Detector (MRD) from SciBooNE
- Located 100m from the Fermilab Booster Neutrino Beam (BNB) target

Physics Motivations

ANNIE will measure final state neutron multiplicity

as a function of topology and kinematics in the 0.5 – 3 GeV range

This measurement is **complementary to liquid Argon** proton multiplicity measurements

- A key quantitative measure for theoretical model validation
- When final state neutrons are not accounted for the neutrino energy is under-estimated, resulting in an asymmetric bias in reconstructed energy
- Knowledge of multiplicity is key to reducing these systematics

Event with absorbed charged pion

Event with charged pions / MEC

Physics Goal: II

Estimated improvement with neutron tagging

- Atmospheric neutrino interactions are a key background in proton decay experiments
- >90% of proton decay events produce no neutrons
- Many neutrino background events will produce one or more neutrons
- Neutron multiplicity measurements will improve background modelling improving confidence in no-neutron events

Anghel, I. et al., arXiv 1504.01480

- First application of LAPPDs (Large Area Picosecond Photo Detectors) in particle physics
 - Implementing multi-tile readout electronics
 - Integration into a hybrid DAQ framework with conventional PMTs
 - Development and demonstration of reconstruction capabilities
 - Crucial to allow ANNIE to distinguish multi-track events to reject pion production

LAPPD Technical Specifications

- 20cm x 20cm active area
- Gain of $>10^6$
- <60ps single pe resolution,<5ps multi-pe timing resolution
- mm-cm level spatial resolution (X-Y planes)
- 20+% QE with ~15% uniformity
- Low dark noise levels

- ANNIE is also the first neutrino beam experiment to use Gd-loaded water for neutron tagging
- ANNIE will demonstrate event reconstruction and long term stability testing of interest for future Gd loading projects

Experiment Progress

Construct the detector

Phase I: June 2016 - 2017

 Assess levels of neutron backgrounds from dirt interactions and sky-shine

 Pure water (no Gd), movable subvolume of Gd-doped liquid scintillator

 NCV optically isolated from tank, watched by 2 PMTs

Tank PMTs act as muon veto

Phase I Results

- Observed and reconstructed neutron captures, both beam events and a ²⁵²Cf calibration source
- Strong suppression of skyshine neutrons seen with increasing depth
- Conservative estimates suggest <2% of beam spills produce a background neutron capture in the fiducial volume of Phase II
- More data to be collected, but levels are confirmed low enough for Phase II physics

Cosmic μ candidate

Neutrino candidate

- Detector simulation with RAT-PAC (Watchman, SNO+, Theia) and WCSim (Hyper-K)
- Flux simulation with GENIE v 2.12
- Assessment of Phase II physics capabilities
 - Neutron detection efficiency
 - MRD kinematic acceptance
 - Tank PMT / LAPPD number and placements
- Various reconstruction avenues being investigated
 - Custom timing residual minimisation algorithm
 - Bonsai
 - FitQun
 - Machine Learning

RAT-PAC geometry – V. Fischer

- Detector simulation with RAT-PAC (Watchman, SNO+, Theia) and WCSim (Hyper-K)
- Flux simulation with GENIE v 2.12
- Assessment of Phase II physics capabilities
 - Neutron detection efficiency
 - MRD kinematic acceptance
 - Tank PMT / LAPPD number and placements
- Various reconstruction avenues being investigated
 - Custom timing residual minimisation algorithm
 - Bonsai
 - FitQun
 - Machine Learning

Neutron detection efficiency vs neutrino interaction position within 2m fiducial y axis region, 10pe threshold

V. Fischer, U.C. Davis

- Detector simulation with RAT-PAC (Watchman, SNO+, Theia) and WCSim (Hyper-K)
- Flux simulation with GENIE v 2.12
- Assessment of Phase II physics capabilities
 - Neutron detection efficiency
 - MRD kinematic acceptance
 - Tank PMT / LAPPD number and placements
- Various reconstruction avenues being investigated
 - Custom timing residual minimisation algorithm
 - Bonsai
 - FitQun
 - Machine Learning

- Detector simulation with RAT-PAC (Watchman, SNO+, Theia) and WCSim (Hyper-K)
- Flux simulation with GENIE v 2.12
- Assessment of Phase II physics capabilities
 - Neutron detection efficiency
 - MRD kinematic acceptance
 - Tank PMT / LAPPD number and placements
- Various reconstruction avenues being investigated
 - Custom timing residual minimisation algorithm
 - Bonsai
 - FitQun
 - Machine Learning

120 PMTs - 67% of events within ~60cm 5 LAPPDs - 67% of events within ~38cm 21 LAPPDs - 67% of events within ~18cm

Looking Ahead

- Upgrade the detector
- ~120 PMTs covering all tank faces
- Fully refurbished 11-layer MRD
- Associated DAQ + HV channels
- $0.2\% \text{ Gd}_2(\text{SO}_4)_3 \rightarrow 0.1\% \text{ Gd by weight}$
- LAPPDs as they become available

Watchboy R7081

LUX R7081

ETEL D784KFBL

Phase II: Fall 2017 - 2021

LAPPD Preparation

- Expect 5 LAPPDs in first year of Phase II
- Design of submersible housing by UC Davis
- Removable cassette mechanism to allow LAPPDs to be added or removed with ease
- Response characterisation and vertical integration of DAQ with ISU test stand

Data Acquisition

- ANNIE will require a dual readout design to accommodate fast digitizers for LAPPDs alongside deep buffered PMT data required to contain delayed neutron captures
- PMTs digitized by VME-based ADC system at 500MHz
- LAPPDs digitized by 'ACDC' board housing five PSEC-4 sampling ASICs, giving 10GHz digitization on a total of 30 readout channels
- Interface to the DAQ system is provided by a central card, which may interface 8 nodes – ACDCs or other central cards

ACDC Card Eric Oberla, University of Chicago

ANNIE Central Card https://arxiv.org/abs/1607.02395

Phase II Timeline

Fall 2018 – Year 1

- Gd in water
- Full MRD
- 5 LAPPDs, installed as available
- Focus on CCQE-like events

2019 - Year 2

- Up to 20 LAPPDs
- Expanded range of topologies to include CC, NC and inelastic scattering

2020 - Years 3+

- Further data taking
- ANNIE Phase III?
- Water-based Liquid Scintillator (Theia) R&D?

Summary

- Measure neutron multiplicity, a key handle for testing interaction models of multi-nucleon final states
- Improve understanding of **neutron tagging**, with applications to background tagging in PDK searches
- Implement LAPPDs in a particle detector, gaining experience with a next-generation technology

- Phase I is a success, results indicate low neutron backgrounds
- Phase II preparation is progressing well
- * ANNIE will start taking physics data in 2018

Thank you for listening

Physics Goal: III

- Atmospheric neutrinos are a background for Diffuse Supernova Neutrino detection
- DSNB signal produces exactly 1 neutron
- Atmospheric neutrinos may mimic this signal
 dominant background above 20MeV
- But these background events may also generate neutrons – knowledge of multiplicity can help account for them
- The energy range here is lower than ANNIE's coverage, but measurements may still be useful for some scenarios
- Background events will typically have higher energy, so neutrons will capture further from the vertex – ANNIE may help characterise this difference

Beacom & Vagins, PRL, 93 (2004) 171101

Proton Decay Backgrounds

- Proton decay events can be selected by requiring, among other criteria, the event have an invariant mass equal to the proton rest mass, and minimal unbalanced momentum
- Plots of signal MC (top), atmospheric neutrino background MC (middle) and data (bottom) show the overlap of background events into the signal region (boxed)
- Background events may generate neutrons through several mechanisms, tagging of which allows the event to be excluded
- Proper modelling requires understanding of neutron multiplicity in atmospheric neutrino interactions
- BNB flux is well matched to this energy range

SK Collaboration. Phys. Rev. Lett. 102 (2009) 141801

It is not enough merely to identify the presence or absence of neutrons

To calculate exclusions and to attribute confidence to discovery, you need to know your fake rate.

$$f = P(0) + P(1)(1-\epsilon) + P(2)(1-\epsilon)^2 + P(3)(1-\epsilon)^3 + \dots$$
 which depends on... for neutron detection efficiency

The smaller ε is, the better you need to understand the shape of P(N)

LAPPD Meeting Hawaii - July, 2015

and the underlying probability

distribution of N neutrons P(N)

- First application of LAPPDs (Large Area Picosecond Photodectors) in particle physics
 - Implementing multi-tile readout electronics
 - Integration into a hybrid DAQ framework with conventional PMTs
 - Development and demonstration of reconstruction capabilities
 - Crucial to allow ANNIE to distinguish multi-track events to reject pion production

LAPPD Technical Specifications

- 20cm x 20cm active area
- Gain of 10^7
- <60ps single pe resolution,<5ps multi-pe timing resolution
- mm-cm level spatial resolution (X-Y planes)
- 20+% QE with ~15% uniformity
- Low dark noise levels

- First application of LAPPDs (Large Area Picosecond Photodectors) in particle physics
 - Implementing multi-tile readout electronics
 - Integration into a hybrid DAQ framework with conventional PMTs
 - Development and demonstration of reconstruction capabilities
 - Crucial to allow ANNIE to distinguish multi-track events to reject pion production

LAPPD Technical Specifications

- 20cm x 20cm active area
- Gain of 10^7
- <60ps single pe resolution,<5ps multi-pe timing resolution
- mm-cm level spatial resolution (X-Y planes)
- 20+% QE with ~15% uniformity
- Low dark noise levels

B. W. Adams et al, A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

Marcus O'Flaherty - ANNIE Collaboration - NuInt 2017

- First application of LAPPDs (Large Area Picosecond Photodectors) in particle physics
 - Implementing multi-tile readout electronics
 - Integration into a hybrid DAQ framework with conventional PMTs
 - Development and demonstration of reconstruction capabilities
 - Crucial to allow ANNIE to distinguish multi-track events to reject pion production

LAPPD Technical Specifications

- 20cm x 20cm active area
- Gain of 10^7
- <60ps single pe resolution,<5ps multi-pe timing resolution
- mm-cm level spatial resolution (X-Y planes)
- 20+% QE with ~15% uniformity
- Low dark noise levels

B. W. Adams et al, A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

- First application of LAPPDs (Large Area Picosecond Photodectors) in particle physics
 - Implementing multi-tile readout electronics
 - Integration into a hybrid DAQ framework with conventional PMTs
 - Development and demonstration of reconstruction capabilities
 - Crucial to allow ANNIE to distinguish multi-track events to reject pion production

LAPPD Technical Specifications

- 20cm x 20cm active area
- Gain of 10^7
- <60ps single pe resolution,<5ps multi-pe timing resolution
- mm-cm level spatial resolution (X-Y planes)
- 20+% QE with ~15% uniformity
- Low dark noise levels

B. W. Adams et al, A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

Cosmic Veto + LEDs

- LED flashers to calibrate PMT response
- Generated by trigger system for parasitic data taking
- Sparse array of scintillator paddles to select cosmic tracks passing through a tank diagonal, and/or through NCV
- Useful for water transparency measurements

SK neutron yield

- SuperK measured energy integrated neutron yield as function of visible energy using atmospherics
- Extended trigger & offline processing to identify 2.2MeV capture event on H₂O
- 45% efficiency is with 19% uncertainty
- Since direction is unknown, only have E_{vis} available
- Combined statistics for v_e , v_μ for both $v \& \overline{v}$
- Results are of limited in modelling atmospheric neutrino interactions
- ANNIE provides more precise and detailed kinematics, flavour and type discrimination

"Borrowed" Photosensors

- ~120 PMTs covering all tank faces
 - 45x 10"Watchbooy R7081
 - 20x 10"LUX R7081
 - 22x 11"HQE ETEL prototypes
 - 40x 8"HQE R5912 purchased new

28/06/17

LUX R7081

ETEL D784KFBL

Neutron Drift in ANNIE

- Primary multiplicity from GENIE v2.8 estimates ~2% of events with >2 neutrons
- Neutrons diffuse ~200cm from their vertex before capture
- Offset in the beam direction by ~18cm due to imparted momentum from neutrino
- Fiducial volume defined in offline analysis to maximise combination of containment and detection efficiency

Flux at ANNIE

- BNB delivers 4×10¹² POT per 1.6 μS spill at 5Hz
- Mean energy 0.7GeV
- 93% pure v_{μ} , 6.4% v_{μ} , 0.6% v_{e} and v_{e}

Event counts in a 2.5-ton fiducial volume over 2x10²⁰ POTs, or 1 year of running

	NC	CC	CCQE	CC-Other
All	11323	26239	13674	12565
Entering MRD	2	7466	4279	3187
Stopping in MRD	2	4830	2792	2038

LAPPDs: Getting Your Own

- LAPPDs are moving from 'commissioning' to 'pilot production' phase of commercialisation
- As a new technology manufacturing process is not yet optimised for cost
- But are already competitive with alternative MCP-based multi-pixel detectors from Photonis and Hamamatsu, for equivalent areas of coverage
- Costs expected to drop as experience and production volumes grow
 - LAPPDs may see market interest outside HEP from private sector areas such as medical imaging, homeland security etc
- 'Gen II' design could help substantially drop manufacturing costs also

LAPPDs Gen II

- Process improvement by Uchicago
- New approaches to photocathode production, eliminate need for vacuum transfer by making photo-cathode after top-seal
- First sealed, in-situ LAPPD produced August '16
- Potentially incorporate more robust ceramic body, readout by capacitive
 - coupling to external anode
- Compatible with current fabrication facilities

Cross-Section Analysis

