

The T2K Flux Predictions

Katarzyna Kowalik, National Centre for Nuclear Research, Warsaw On behalf of the T2K Collaboration

T2K Experiment

Tokai-to-Kamioka – long-baseline neutrino experiment in Japan

- ➤ Measure $θ_{13}$ ν_µ → ν_e appearance
- ➤ Measure $θ_{23} v_{\mu} \rightarrow v_{\mu}$ disappearance
- ► Resolving octant of θ_{23}

- Various cross-section measurements
- Search for CP violation

Far Detector in Kamioka

Neutrino Source and Near Detectors in Tokai (J-PARC)

Flux predictions are important for the far-to-near ratio and cross section measurements

T2K Neutrino Production Beamline

30 GeV protons extracted from J-PARC MR
 secondary π, K focused by 3 magnetic horns

+250 kA (-250 kA) for $\,\nu$ (anti-v) enhanced mode

reverse polarity for anti-neutrino beam

90 cm long and 2.6 cm diameter

- > Beam direction is stable to within 1 mrd \rightarrow 2% shift of the E_v peak at far detector SK
- Stable beam operation achieved at the maximum beam power 470 kW

The Off-Axis T2K Beam

Super Kamiokande

The off-axis technique uses the fact that the energy of neutrino emitted in the 2-body pion (kaon) decay depends only weakly on neutrino parent momentum

v Energy [GeV]

ND280 and SK are placed at the angle 2.5⁰ off the target

- Narrow spectrum of beam with peak ~0.6 GeV
- Energy peaks close to the expected first oscillation maximum at L = 295 km
- Reduces the higher-energy background

Neutrino and Anti-Neutrino Flux Predictions

- Mostly but not only pions are produced in the target
- Other v parents kaons as well as muons produce a background flux coming from:
 - v_e flux (< 1% at the peak energy) it is an important background for the appearance analysis
 - "Wrong sign neutrinos" a bigger contribution for the anti-neutrino mode

channel			BR [%]
π	\rightarrow	$\mu \ u_{\mu}$	99.9
	\rightarrow	e ν_e	10^{-4}
Κ	\rightarrow	$\mu \ u_{\mu}$	63.5
	\rightarrow	$\pi^0 \ \mathrm{e} \ \nu_e$	5.1
	\rightarrow	$\pi^0 \; \mu \; u_\mu$	3.3
K^{0}_{L}	\rightarrow	$\pi \in \nu_e$	40.5
	\rightarrow	$\pi \; \mu \; u_{\mu}$	27.0
μ	\rightarrow	e $\nu_e \ \nu_\mu$	100

Motivation for Hadron Production Measurements

- The flux predictions in accelerator-based neutrino experiments depend on hadron production models of v parents
- Hadron production at present is still one of the dominant uncertainties in flux estimates

NA61 measurements replace model-based calculations for hadron production in v flux estimates thus reduce one of the largest sources of uncertainty

NA61/SHINE Experimental Setup

NA61

new FTPC installed for 2017 run

Fixed target experiment at CERN SPS with the large acceptance spectrometer

- **Time Projection Chambers** : tracking and particle \geq identification
 - Momentum resolution $\sigma(p)/p^2 \approx 10^{-4} (\text{GeV/c})^{-1}$
 - Particle identification : $\sigma(dE/dx)/\langle dE/dx \rangle \approx 4\%$ \geq
- **Time of Flight :** particle identification
 - ToF-F array installed to fully cover T2K acceptance \geq
 - Time resolution $\sigma(t)$ ToF-F \approx 120ps, $\sigma(t)$ ToF-L/R \approx 80ps

TPC and ToF detectors provide very good particle identification

Combined dE/dx + ToF

NA61/SHINE Hadron Production Data

Two different targets were used:

• thin carbon (2 cm, 0.04 $\lambda_{\rm l}$): hadrons from primary interactions (sensitive to 60% of the flux)

• **T2K replica** (90 cm, 1.9 λ_1): hadrons from primary and secondary interactions (constrains 90% of the flux)

Thin target spectra π^{\pm} , K^{\pm} , K^{0}_{S} , Λ , protons: 2007 : Phys.Rev. C84 (2011), 034604 Phys.Rev. C85 (2012) 035210 2009 : Eur.Phys.J. C76 (2016) no.2, 84 Replica target spectra π^{\pm} 2007 : NIM A701 (2013) 99-114

2009 : Eur.Phys.J. C76 (2016) no.11, 617

Data to constrain T2K flux:

Beam+Target	p[GeV/c]	Year	N _{triggers} [10 ⁶]
p+C	31	2007	0.7
p+T2K Replica	31	2007	0.2
p+C	31	2009	5.4
p+T2K Replica	31	2009	2.8
p+T2K Replica	31	2010	10.0

Status of the analysis:

- > 2007 published, small stat. pilot runs
- 2009 published, large stat. for thin target and first results for T2K replica
- 2010 new T2K replica results for π[±] ongoing analysis for K[±], proton

Measurements with both targets are important to understand hadron-production 2009 thin target data used for recent tuning of T2K flux

Measurements with Thin Target Data π⁻ Multiplicities K⁻ Multiplicities

Pion Spectra Uncertainties

The largest contributions to sys. error: **feed-down** improved with studies of decay of strange particles (K_s^0 and Λ), particle identification (PID) and forward acceptance

2007 stat. error 0.1 $20 < \theta < 40$ mrad Fractional error 50.002 2007 syst. error π^{-} - tof-dE/dx -Total sys. onal Errors 0.2 $60 < \theta < 100 \text{ mrad}$ π -Track cuts 2009 stat. error -K and \overline{p} 2009 syst. error -Fwd. Acc. 0.1 $20 < \theta < 40$ mrad Lractional error -PID _{ys.} π^+ - dE/dx -PID 20 p [GeV/c] 10 15 -Feed-down • Track cuts ---Rec. algo •Fwd. Acc. $60 < \theta < 100 \text{ mrad}$ π^+ Λ weight 0.5 1.5 p [GeV/c] 2.0 Eraction 0.1 20 25 p [GeV/c] 15 10 0.1 $20 < \theta < 40 \text{ mrad}$ Fractional error 20 p [GeV/c] 15 dE/dx Systematic errors are dominant at low p while at high p statistical errors still are the largest Published: Eur.Phys.J.C76 (2016) no.2, 84 p [GeV/c]

Improvements in 2009 compared to pilot run:

11

- Statistical precision improved by factor 2-3
- Systematic error reduced by factor 2

Modeling of T2K Flux

FLUKA Primary p+C interaction in the target	GEANT3+GCALOR tracking particles exiting the target through horns, magnetic field and decay volume.	RE-WEIGHTING pion, kaon multiplicity and interaction rate are used to re-weight simulations
Beamline monitors data are parameterized to obtain the proton	Accurate description of secondary beamline in simulation is required	External hadron production measurements are used - mostly NA61/SHINE
beam profile		

T2K Flux Tuning with Thin Target NA61 Data

To tune T2K flux, for each simulated neutrino interaction, a weight is calculated for simulated event to adjust MC to data

- \blacktriangleright Primary interactions can be directly re-weighted with NA61 thin target data for π^{\pm} , K[±]
- > The kinematic coverage is extended by using parameterization obtained from fit to data
- Scaling is used for secondary interactions and interactions on material other than carbon such as iron (decay volume walls) or aluminum (horns)

Flux Uncertainties at SK

Total Flux Uncertainty

New tuning including 2009 NA61 data reduced the neutrino flux uncertainty to $^{9\%}$ at E_v peak as compared to 11% obtained with the previous tuning

Fractional Error

First flux tuning for anti-neutrino gives uncertainty \sim 9% at E_v peak based on 2009 NA61 data

Hadron Production remains the largest contribution to the flux uncertainty \rightarrow Uncertainties can be further reduced with the replica target

Long Target (T2K Replica) Analysis

Neutrinos are coming from hadrons produced in **primary p+C interactions** (~60%) and in **interactions of secondary particles** either in the target (~30%) or outside the target (~10%)

- > Measurements in bins of $\{p, \theta, Z\}$
- 5 bins along beam Z-direction + 1 bin target downstream face
- \blacktriangleright Shape of E_v depends on the additional Z-binning

First π^{-} Measurements with T2K Replica Target

The spectra of π^{\pm} were measured (dE/dx+ToF analysis method was used) for the 2009 data

Example of π^{-} for θ [0-60]mrad

- Statistical precision ~5% in most of the bins
- Systematic errors vary from ~5% in the center of target to ~10% in the most upstream and downstream bins (large contribution from track extrapolation)
- ➤ Ongoing work to tune T2K flux simulation using pion spectra → Poster by Tomislav Vladisavljevic: Estimating the T2K Neutrino Flux with NA61 2009 Replica-Target Data Published : Eur.Phys.J. C76 (2016) no.11, 617; A.Hasler PhD (2015) Geneva U.

π^{\pm} for T2K Replica Target for Largest Dataset

- Analysis of 3x bigger statistics (2010 dataset) than previously is ongoing
- > Preliminary results (examples) for π^{\pm} presented here
- \succ Extraction of K[±] as well as proton spectra is possible

π^{\pm} Systematic Uncertainties

- Position of target is dominant systematic error for most upand downstream Z-bins
- Sys. errors are similar to the ones obtained for the previous long target analysis

Flux Predictions for T2K Replica Target

 Up to 5-10% difference between thin (+ secondary interactions modeled with MC) and long target flux predictions; however they are consistent within errors

Published : Eur.Phys.J. C76 (2016) no.11, 617; A.Hasler PhD (2015) Geneva U.

Summary

- > T2K flux is predicted with the use of the NA61/SHINE data
- > The flux uncertainty is about 9% at T2K E_v peak when using the thin target data
- ➤ T2K flux tuning with the T2K replica target data is ongoing → See poster by Tomislav Vladisavljevic
- > Measurements for π^{\pm} with replica target are expected to further reduces the error on flux to about 4% at T2K E_v peak
- First-time spectra for K[±] are expected from ongoing analysis of the largest dataset with T2K replica \rightarrow reduction of uncertainties for v_e and high-energy tail of v_u flux

Other T2K Talks and Posters

Talks:

- □ Steve Dennis: T2K: Impact of Cross Section uncertainties on the oscillation anlaysis
- Alfonso Garcia: Muon neutrino inclusive CC cross section measurement on carbon and carbon/ oxygen ratio at T2K
- □ Sophie King: Measurement of electron neutrino and antineutrino cross sections in the off-axis near detector at T2K
- □ Marcela Bartkiewicz: Pion production measurements at T2K
- □ Stephen Dolan: Neutrino charged current pionless cross section measurements from T2K
- Blair Jamieson: J-PARC Intermediate Water Cherenkov Detector

Posters:

- Stephen Dolan: Probing Nuclear Effects at the T2K Near Detector Using Transverse Kinematic Imbalance
- Fady Shaker: A New Framework To Extract The AntiNuE Cross Section At The T2K Off-Axis Near Detector
- Tomislav Vladisavljevic: Estimating the T2K Neutrino Flux with NA61/SHINE 2009 Replica-Target Data
- □ Andrew Cudd: Multinucleon Extication (2p2h) Model Comparison
- □ Lucas Koch: Muon neutrino interaction cross sections on argon gas in the T2K near detector
- \Box Tomasz Wąchała: v_µ CC-0 π Interactions on Led in the Near Detector of the T2K Experiment
- \Box Zoya Vallari: Neutral Current Single π^0 event rate on Water in Pi0 detector at T2K
- □ Teppei Katori: Search for NC1gamma production in ND280
- □ Mitchell Yu : Constraining the pion secondary interaction systematic uncertainties using ND280 data

Backup Slides

Beam Stability Measurements

- INGRID is scintillator/iron tracking detectors on the beam axis
- Event rate normalized to POT is stable within 1%
- Beam direction is stable to within 1mrd \rightarrow corresponds to 2% shift of the E_v peak

Accumulated Data and Beam Power

Total collected data : 2.25 x 10²¹ Proton On Target (POT)

- ➤ v mode: 1.49 x 10²¹ POT
- anti-v mode: 0.76 x 10²¹ POT

Stable beam operation achieved at 470 kW during Run 8

Importance of Pion Reinteractions in Target

NuMI proton beam of 80-120GeV/c scatters off graphite target

About 20-40% of pions which yield v_{μ} in MINERvA and MINOS were are not created directly in pC collisions

The fraction of pions from reinteractions grows:

- As the traget thinkness increases
- As the beam momentum increases (p₀)
- Pion momentum decreases

A good understanding of reinteractions is important for the precise flux determination

Derivation of Spectra

The corrected number of particles α in (p, θ) intervals with target inserted $\Delta n_{\alpha}^{\ l}$ and target removed $\Delta n_{\alpha}^{\ R}$ are used to calculate double differential cross section:

$$\frac{d^{2}\sigma_{\alpha}}{dpd\theta} = \frac{\sigma_{trig}}{1 - \varepsilon} \left(\frac{1}{N^{I}} \frac{\Delta n_{\alpha}^{I}}{\Delta p \Delta \theta} - \frac{\varepsilon}{N^{R}} \frac{\Delta n_{\alpha}^{R}}{\Delta p \Delta \theta} \right)$$

Target-in Out-of target correction

 σ_{trig} – trigger cross section gives the probability to have an interaction in the target $\sigma_{trig} = 305.7\pm2.7(\text{stat})\pm1.0(\text{det})\text{mb}$

σ_{prod} [mb]

- ϵ the ratio of interaction probabilities for removed and inserted target ϵ =0.123±0.004
- N_{μ} , N_{R} the number of events with target inserted and removed

The pion spectra normalized to the mean pion multiplicity in production interactions:

$$\frac{d^2\sigma_{\alpha}}{dpd\theta} = \frac{1}{\sigma_{prod}} \cdot \frac{d^2\sigma_{\alpha}}{dpd\theta}$$

 $\sigma_{prod} = 233.5 \pm 2.8(stat) \pm 2.4(det) \pm 3.5(mod)mb$

 σ_{prod} is one of contributions to systematic flux uncertainty

Analysis Methods for Charged Hadrons

There are 3 different analysis :

- h- analysis : no PID required, small non-pion contribution is subtracted using MC Corrected spectra of π^- in a broad kinematic range
- dE/dx analysis at low p : yields fitted to dE/dx distributions at low momentum region Corrected spectra of π^{\pm} , p up to 3GeV/C
- Combined dE/dx +ToF analysis: yield fitted to 2-dimentional m² versus dE/dx distributions

Corrected spectra of π^{\pm} , K[±], p above 1GeV/C

π± Measurements with Thin Target Data π⁺ Multiplicities π⁻ Multiplicities

K[±] Measurements with Thin Target Data

Important for v_e and high energy tail of v_{μ} flux in T2K

30

K⁰_S Analysis

 $K^0{}_s$ yields can be predicted from K^{\pm} measurements using:

the isospin symmetry assumption:

$$N(K_{S}^{0}) = \frac{1}{2} \left(N(K^{+}) + N(K^{-}) \right)$$

the quark-counting argument:

$$N(K_S^0) = \frac{1}{8} (3N(K^+) + 5N(K^-))$$

Good agreement of K_{s}^{0} yields predicted from K^{\pm} measurements

Protons

32

 Λ^0

K+ Uncertainties

34

K- Uncertainties

35

Long Target Analysis

Neutrinos are coming from hadrons produced in the **primary interactions** of the proton beam (~60%) and in **interactions of secondary particles**, either in the target (~30%) or outside the target (~10%)

The flux tuning method was tested with small 2007 pilot data. The method was applied to 14x larger sample (the 2009 dataset).

Systematics for 2009 π - Measurements with Long Target

Ongoing Analysis of Long Target Largest Dataset

- Analysis of 3x bigger statistics that previously is ongoing
- Extraction of K[±] as well as proton spectra possible

