NOvA Pion Measurements Hongyue Duyang University of South Carolina For the NOvA Collaboration ## The NOvA Near Detector 0.3 kton, 4.2mX4.2mX15.8m, **C12** 66.8% **CI35** 16.4% Н1 10.5% Ti48 3.3% - 1 km from source, underground at Fermilab. - PVC cells filled with liquid scintillator. - Alternating planes of orthogonal view. **O16** 2.6% Others 0.4% Low-Z, fine-grained (1 plane $\sim 0.15X_0$), highly-active tracking calorimeter. ## Pions in The NOvA ND - Photons from neutral pion decay make EM showers. - Reconstructing both photons provide constraint on background and energy scale. #### Pions in The NOvA ND - Narrow band neutrino beam 1~3GeV peak at ~2GeV, Dominated by ν_μ(94%) - Hadron production uncertainty constraint by external hadron production data. (See Leo Aliaga's talk on Monday) ## **NOvA Pion Measurements Overview** - Pion production makes background to oscillation analysis. - We want to measure them in our own detector! - Pion kinematics are sensitive to final-state interaction (elastic/inelastic scattering, absorption, charge-exchange). - We are in 1~3 GeV region: cross-check with MINERvA, MiniBooNE, T2K. - Working on several pion analysis: - NC COH π^0 : reporting preliminary result first time! - Work in progress: - CC π⁰ - NC π⁰ - CC π^+/π^- ### **NOvA Pion Measurements Overview** - Pion production makes background to oscillation analysis. - We want to measure them in our own detector! - Pion kinematics are sensitive to final-state interaction (elastic/inelastic scattering, absorption, charge-exchange). - We are in 1~3 GeV region: cross-check with MINERvA, MiniBooNE, T2K. - Working on several pion analysis: - NC COH π^0 : reporting preliminary result first time! - Work in progress: - CC π⁰ - NC π⁰ - CC π^+/π^- - Neutrinos scatter coherently off entire target nucleus with small momentum transfer. - Single forward-going pion, without other pions or nucleons. - Identify the NC π^0 sample - Absence of muon. - Two showers identified as photons by dE/dx-based likelihoods. - Reconstruct invariant mass. - Background dominated by RES and DIS π^0 s. - Cut on invariant mass further reduces background. - Also serve as a check of photon reconstruction and energy scale. - Divide the NC π^0 into two sub-samples: - Signal sample: events with most of their energy in the 2 photon-showers and low vertex energy: it has >90% of the signal. - Control sample: the events with extra energy other than the photons or in the vertex region, dominated by non-coherent π⁰s (RES and DIS). E_{π^0} (GeV) Fit the backgrounds to control sample data in π^0 energy vs angle 2D space. • Fit the backgrounds to control sample data in π^0 energy vs angle 2D space. Apply the background tuning to the signal sample. - Background fit result are applied to the backgrounds in the signal sample. - Coherent signal measurement by subtracting normalized background from data in the coherent region of the energy and angle 2D space. ## NC Coherent π^0 NOvA Preliminary | Source | $\delta(\%)$ | |---------------------------|--------------| | Calorimetric Energy Scale | 3.4 | | Background Modeling | 10.0 | | Control Sample Selection | 2.9 | | EM Shower Modeling | 1.1 | | Coherent Modeling | 3.7 | | Rock Event | 2.4 | | Alignment | 2.0 | | Flux | 9.4 | | Total Systematics | 15.3 | | Signal Sample Statistics | 5.3 | | Control Sample Statistics | 4.1 | | Total Uncertainty | 16.7 | - Coherent signal measurement by subtracting normalized background from data in energy and angle 2D space. - Measured flux-averaged cross-section: σ = 14.0 ± 0.9(stat.) ± 2.1(syst.)×10⁻⁴⁰cm²/nucleus - Total uncertainty 16.7%, systematic dominant. # NC Coherent π^0 NOvA Preliminary | | Source | $\delta(\%)$ | |---|---|--------------| | | Calorimetric Energy Scale | 3.4 | | | Background Modeling | 10.0 | | | Control Sample Selection | 2.9 | | | EM Shower Modeling | 1.1 | | | Coherent Modeling | 3.7 | | | Rock Event | 2.4 | | | ' asidht | 2.0 | | ١ | Rock Event tonight ster tonight systematics sugnal Sample Statistics | 9.4 | | | Systematics | 15.3 | | | signal Sample Statistics | 5.3 | | | Control Sample Statistics | 4.1 | | | Total Uncertainty | 16.7 | | | | | - Coherent signal measurement by subtracting normalized background from data in energy and angle 2D space. - Measured flux-averaged cross-section: σ = 14.0 ± 0.9(stat.) ± 2.1(syst.)×10⁻⁴⁰cm²/nucleus - Total uncertainty 16.7%, systematic dominant. ### **NOvA Pion Measurements Overview** - Pion production makes background to oscillation analysis. - We want to measure them in our own detector! - Pion kinematics are sensitive to final-state interaction (elastic/inelastic scattering, absorption, charge-exchange). - We are in 1~3 GeV region: cross-check with MINERvA, MiniBooNE, T2K. - Working on several pion analysis: - NC COH π^0 : reporting preliminary result first time! - Work in progress: - CC π⁰ - NC π⁰ - CC π⁺/π⁻ # ν_{μ} -CC π^0 Signal: ν_{μ} -CC events with at least one primary π^0 in the final state. 0.08 0.04 0.06 Energy per Hit [GeV] - Photon gap from vertex. - Number of missing planes. - Fit signal and background MC to data in each kinematic bin. # ν_{μ} -CC π^0 ## **NOvA Pion Analysis Overview** - Pion production makes background to oscillation analysis. - We want to measure them in our own detector! - Pion kinematics are sensitive to final-state interaction (elastic/inelastic scattering, absorption, charge-exchange). - We are in 1~3 GeV region: cross-check with MINERvA, MiniBooNE, T2K. - Working on several pion analysis: - NC COH π^0 : reporting preliminary result first time! - Work in progress: - CC π^0 - NC π⁰ - CC π⁺/π⁻ #### Neutral Current π^0 - Signal: NC with at least one π^0 . - Important background to v_e appearance. - A event-level Boost Decision Tree (BDT) developed using shower variables as inputs. - Work in progress. - Aiming to report differential cross-section in π^0 kinematics. ### **NOvA Pion Measurements Overview** - Pion production makes background to oscillation analysis. - We want to measure them in our own detector! - Pion kinematics are sensitive to final-state interaction (elastic/inelastic scattering, absorption, charge-exchange). - We are in 1~3 GeV region: cross-check with MINERvA, MiniBooNE, T2K. - Working on several pion analysis: - NC COH π^0 : reporting preliminary result first time! - Work in progress: - CC π⁰ - NC π⁰ - CC π^+/π^- ## Charge Current π^+/π^- Signal: CC events with at least one charged pion (π^+/π^-) in the final state. - Working on improving π^+/π^- reconstruction. - Using deep-learning technique: A event-level Convolutional Visual Network (CVN) classifier. - Uses full near detector raw data/MC image as an input. #### Work in progress: - Efficiency of pre-selection and CVN selection. - Systematics on CVN. - Sideband background-fitting study. - The first goal is to report differential cross-section in muon kinematics. ## Charge Current π^+/π^- Signal: CC events with at least one charged pion (π^+/π^-) in the final state. - Working on improving π^+/π^- reconstruction. - Using deep-learning technique: A event-level Convolutional Visual Network (CVN) ... oımulation - Systematics on CVN. - Sideband background-fitting study. - The first goal is to report differential cross-section in muon kinematics. ## Summary - NOvA is entering the game of neutrino pion production measurement. - Fine-grained liquid scintillator detector. - Narrow band neutrino flux at 1~3 GeV. - High statistics neutrino data. Taking anti-neutrino data too. - NC-Coherent π^0 : preliminary result reported for the first time - CC π^0 , NC π^0 , and CC π^+/π^- in progress. - Stay tuned! # Back up slides - Narrow band neutrino beam 1~3GeV peak at ~2GeV. - Dominated by $v_{\mu}(94\%)$, with small contribution from $v_{e}(1\%)$. - Hadron production uncertainty constraint by external hadron production data. (See Leo Aliaga's talk on Monday) - Also working on in situ flux measurement by neutrino-electron scattering. Signal Sample: one pi0 decaying into two photons, both reconstructed in NOvA ND. No other nucleons or pions. # ν_{μ} -CC π^0 Signal: ν_{μ} -CC events with at least one primary π^0 in the final state # Charge Current π^+/π^- Signal: CC events with at least one charged pion (π^+/π^-) in the final state ## Neutral Current π⁰ Signal: NC events with at least one π^0 in the final state • Fit background to control sample data in π^0 energy vs angle 2D space. The control sample is used to fit background to data in π^0 energy vs angle 2D space. #### Neutral Current π^0 - Signal: ν_{μ} -NC with at least one π^0 . Start with 2-prong events. - A event-level Boost Decision Tree (BDT) developed using shower variables as inputs. | Rank | : | Variable | : | Separation | |------|---|--------------------|---|------------| | 1 | : | CVN_numu | : | 1.524e-01 | | 2 | : | Prong1 epi0LLL | : | 8.832e-02 | | 3 | : | Prong1 epiLLL | : | 8.293e-02 | | 4 | : | Prong1 Cont planes | : | 8.248e-02 | | 5 | : | Prong1 epLLT | : | 6.322e-02 | | 6 | : | Prong1 Width | : | 5.794e-02 | | 7 | : | CVN_nc | : | 3.129e-02 | | 8 | : | Prong1 dedx | : | 2.090e-02 | | 9 | : | distPngStartPos | : | 1.186e-02 | | 10 | : | Prong1 epi0LLT | : | 1.158e-02 | | 11 | : | Prong2 dedx | : | 1.150e-02 | | | | | | | #### **NOvA Prelimina** #### **NOvA Preliminary** | • | pherent signal measurement by subtracting | | | |---|---|--|--| | | normalized background from data in energy and | | | | | angle 2D space. | | | - Measured flux-averaged cross-section: $\sigma = 14.0 \pm 0.9(stat.) \pm 2.1(syst.) \times 10^{-40} cm^2/nucleus$ - Total uncertainty 16.7%, systematic dominant. | 11 () | | |---------------------------|--------------| | Source | $\delta(\%)$ | | Calorimetric Energy Scale | 3.4 | | Background Modeling | 10.0 | | Control Sample Selection | 2.9 | | EM Shower Modeling | 1.1 | | Coherent Modeling | 3.7 | | Rock Event | 2.4 | | Alignment | 2.0 | | Flux | 9.4 | | Total Systematics | 15.3 | | Signal Sample Statistics | 5.3 | | Control Sample Statistics | 4.1 | | Total Uncertainty | 16.7 | | | | # Charge Exchange