Nulnt 17 26/06/2017

v_{μ} inclusive CC cross-section measurement on C at TzK

Alfonso Garcia and Federico Sanchez for the T2K collaboration

NEW

Inclusive Cross Section:

- Inclusive measurements are valuable:
 - O High purity and efficiency.
 - O Hadron information is almost not used.
 - O Test different channel predictions from models.

- T2K already published a v_{μ} CC inclusive cross section using the off-axis near detector in 2013 (PRD87).
 - O Statistics was limited \rightarrow loose binning.
 - O Simple event selection \rightarrow phase space restricted to forward region of the outgoing μ^- .

NEW Off-Axis Inclusive Cross Section:

Goal -> double-differential (p_{μ} , cos θ_{μ}) cross section v_{μ} CC inclusive on plastic*

*C[86%]H[7%]O[4%]

- Statistics has been increased by a factor of five.
- New event selection has been developed:
 - O Increase the angular acceptance for high-angle and backward-going muons.
 - Reduce the pion contamination (main background).
- Full use of the off-axis near detector (ND280) is required.

Previous v_{μ} CC Selection:

- Event selection focused on the TRACKER region (FGDs+TPCs).
 - O Select tracks starting in the FGD1 entering in TPC2.

Previous v_{μ} CC Selection:

- Event selection focused on the TRACKER region (FGDs+TPCs).
 - O Select tracks starting in the FGD1 entering in TPC2.
 - O Momentum/charge (curvature) and PID (energy loss) reconstructed using TPC.

Previous v_{μ} CC Selection:

- Event selection focused on the TRACKER region (FGDs+TPCs).
 - O Select tracks starting in the FGD1 entering in TPC2.
 - O Momentum/charge (curvature) and PID (energy loss) reconstructed using TPC.
 - O Other detectors used as veto.

• New v_{μ} CC selection aims for full coverage in ND280.

- New v_{μ} CC selection aims for full coverage in ND280.
 - O Select backward-going muons using timing (FGD1-FGD2 // FGD1-PoD // FGD1-ECAL).

- New v_{μ} CC selection aims for full coverage in ND280.
 - O Select backward-going muons using timing (FGD1-FGD2 // FGD1-PoD // FGD1-ECAL).
 - O Select high-angle muons using calorimeter information.

v_{μ} CC Selection:

Clear improvement of angular acceptance & high purities

Forward -> FWD Backward -> BWD High-Angle Forward -> HAFWD High-Angle Backward -> HABWD

Purities	FWD	BWD	HAFWD	HABWD
ν _μ CC	89%	73%	82%	79%
$\overline{\mathbf{v}}_{\mu}$ / v_e / $\overline{\mathbf{v}}_e$ CC or NC	6%	2%	6%	3%
Out of FV	4%	22%	11%	17%
Sand µ	1%	2%	1%	1%

Goal -> double-differential (p_{μ} , cos θ_{μ}) cross section v_{μ} CC inclusive on plastic*

*C[86%]H[7%]O[4%]

$$\frac{d\sigma}{dp_{\mu,i}d\cos\theta_{\mu,j}} = \frac{N_{ij}^{CC-\mu}}{\epsilon_{ij}^{CC-\mu,MC} \Phi N_{nucleons}^{FV} \Delta p_{\mu,i} \Delta \cos\theta_{\mu,j}}$$

Goal -> double-differential (p_{μ} , cos θ_{μ}) cross section v_{μ} CC inclusive on plastic*

*C[86%]H[7%]O[4%]

Flux integrated result:

- O Detector dependent.
- O Less model bias.

Goal -> double-differential (p_{μ} , cos θ_{μ}) cross section v_{μ} CC inclusive on plastic*

- µ kinematics unfolded using maximum likelihood fit (PRD 93, 112012 [2016]).
- Background subtraction controlled with π sidebands.

Goal -> double-differential (p_{μ} , cos θ_{μ}) cross section v_{μ} CC inclusive on plastic*

*C[86%]H[7%]O[4%]

• Efficiency correction using two different predictions.

Goal -> double-differential (p_{μ} , cos θ_{μ}) cross section v_{μ} CC inclusive on plastic*

*C[86%]H[7%]O[4%]

- Efficiency correction using NEUT 5.3.0 and GENIE 2.8.0 predictions.
 - O Discrepancies for low momentum muons going forward (in RES and DIS channels).

Goal -> double-differential (p_{μ} , cos θ_{μ}) cross section v_{μ} CC inclusive on plastic*

0.0

0.02

• Flux normalization uncertainty dominates, and generator modeling uncertainty is low (except backward region).

¹⁰ p_{_} [GeV/c]

• Robust cross-section measurement (same results with two models).

Conclusions:

- T2K near detectors provide a perfect opportunity to make precise cross section measurements.
- v_{μ} CC selection has been improved in order to increase both purity and angular acceptance.
- New inclusive cross-section measurement has been developed using new selection.
- Other on-going inclusive analyses:
 - $\sigma_{water}/\sigma_{scint}$ using two FGDs sub-detectors in ND280 (off-axis).
 - O v_{μ} CC-inclusive cross section with H₂O using INGRID (on-axis).
 - O Run 8 will increase by a factor ~2 statistics.

Back up

Alfonso Garcia , IFAE (Barcelona) | v_{μ} inclusive CC cross section measurement on C at T2K (NuInt 17, 26/06/2017)

Off-axis Neutrino Flux:

- Off-axis neutrino flux -> narrow peak centred at ~600 MeV.
- Low multiplicity interactions are dominant in this energy region.
- Nuclear medium plays a fundamental role.

Event generators:

	NEUT 5.3.2	GENIE 2.8.0
CCQE	SF (Benhar et al., 2000) BBA05 (Bradford et al., 2005) $M_A^{QE} = 1.21 \text{ GeV/c}^2$ $p_F [^{12}C] = 217 \text{ MeV/c}$ $E_B [^{12}C] = 25 \text{ MeV}$	RFG (Bodek et al., 1981) BBA05 (Bradford et al., 2005) $M_A^{QE} = 0.99 \text{ GeV/c}^2$ $p_F [^{12}C] = 221 \text{ MeV/c}$ $E_B [^{12}C] = 25 \text{ MeV}$
2p2h	Nieves et al., 2011	_
CCRES	<u>W<2 GeV</u> Rein-Sehgal, 1981 FF (Graczyk et al., 2008)	<u>W<1.7 GeV</u> Rein-Sehgal, 1981 FF (Kuzmin et al., 2016)
CCDIS	<u>W>1.3 GeV (w/o single π)</u> GRV98 PDF (Glück et al. 1998) BY corr. at low Q2 (Bodek et al. 2003)	<u>W>1.7 GeV (for W<1.7 GeV is tuned)</u> GRV98 PDF (Glück et al. 1998) BY corr. at low Q2 (Bodek et al. 2005)
Hadronization	<u>W < 2 GeV</u> KNO scaling (Koba et al. 1972) <u>W > 2 GeV</u> PYTHIA/JETSET	<u>W < 2.3 GeV</u> AGKY (Koba et al. 1972) <u>2.3 GeV < W < 3 GeV</u> AGKY (Koba et al. 1972) + PYTHIA/JETSET <u>W > 3 GeV</u> PYTHIA/JETSET
FSI	Intra-nuclear cascade	Intra-nuclear cascade (INTRANUKE hA)

Momentum distribution:

Angular distribution:

Sidebands:

 Try to constrain π⁻ background modelling (NC and pion FSI).

- Highly pure π^- sample.
- Sidebands and background in signal selection have similar shape.

 π^{-} BCKG \rightarrow NEUT & GENIE = ~1500 events(~6%) π^{-} SIDEBANDS \rightarrow NEUT & GENIE = ~750 events (~70%)

Efficiency:

• Efficiency computed with two different MC:

Systematics uncertainties:

MODELLING

πFSI

Dial	Code	Type	Prior	Error	Valid range
FSI_INEL_LO_E	kNCasc_FrInelLow_pi	Shape	0.0	0.41	[-0.8, 1.2]
FSI_INEL_HI_E	kNCasc_FrInelHigh_pi	Shape	0.0	0.34	[-0.8, 1.2]
FSI_PI_PROD	kNCasc_FrPiProd_pi	Shape	0.0	0.5	[-0.8, 1.2]
FSI_PI_ABS	kNCasc_FrAbs_pi	Shape	0.0	0.41	[-0.6, 0.9]
FSI_CEX_LO_E	kNCasc_FrCExLow_pi	Shape	0.0	0.57	[-0.8, 1.2]
FSI_CEX_HI_E	kNCasc_FrCExHigh_pi	Shape	0.0	0.28	[-0.8, 1.2]

NUISANCE

π HADRON

Dial	Code	Type	Prior	Error	Valid range
AGKY_xF1pi	$kGHadrAGKY_xF1pi$	Shape	0	0.2	[-9999, 9999]
AGKY_pT1pi	$kGHadrAGKY_pT1pi$	Shape	0	0.03	[-9999, 9999]
Nucl_FormZone	kGHadrNucl_FormZone	Shape	0	0.5	[-9999, 9999]
Theta_Delta2Npi	$kGRDcy_Theta_Delta2Npi$	Shape	0	1	[-1,1]

XSEC

Dial	Code	Type	Prior	Error	Valid range
MAQE	$kNXSec_MaCCQE$	Shape	1.2	0.3	[0, 9999]
pF_C	kNIWG2014a_pF_C12	Shape	217	30	[200, 275]
MEC_C	kNIWGMEC_Norm_C12	Norm	1	1	[0, 9999]
EB_C	kNIWG2014a_Eb_C12	Shape	25	30	[12, 42]
pF_O	kNIWG2014a_pF_O16	Shape	225	30	[200, 275]
MEC_O	kNIWGMEC_Norm_O16	Norm	1	1	[0, 9999]
EB_O	kNIWG2014a_Eb_O16	Shape	27	30	[12, 42]
CA5	kNXSec_CA5RES	Shape	1.01	0.12	[0, 9999]
MANFFRES	kNXSec_MaNFFRES	Shape	0.95	0.15	[0, 9999]
BgRES	kNXSec_BgSclRES	Shape	1.3	0.2	[0, 9999]
DISMPISHP	kNIWG2012a_dismpishp	Shape	0	0.4	[-9999, 9999]
CCCOH_C_O	kNIWG2012a_cccohE0	Norm	1	0.3	[0, 9999]
CCCOH_O_O	kNIWG2012a_cccohE0	Norm	1	0.3	[0, 9999]
CNUE_0	kNIWG2012a_ccnueE0	Norm	1	0.03	[0, 9999]
CNUEBAR_O	kNIWG2012a_ccnueE0	Norm	1	0.03	[0, 9999]
NCCOH_O	kNIWG2012a_nccohE0	Norm	1	0.3	[0, 9999]
NCOTHER_O	kNIWG2012a_ncotherE0	Norm	1	0.3	[0, 9999]

NUISANCE

Total uncertainties:

• Flux+DataSTAT dominates with low modelling uncertainties (except backward region).

Integrated cross section result:

- Integrated result matches previous analysis.
- Error reduced from 12% to 9% (flux dominates).

 $[2014] \sim 1.1 \times 10^{20} \text{POT}$ $\sigma = 0.698 + -0.085 \text{ cm}^2 \text{nucleon}^{-1}$ $[2017] \sim 5.8 \times 10^{20} \text{POT}$ $\sigma = 0.700 + -0.064 \text{ cm}^2 \text{nucleon}^{-1}$

Real data results:

Consistent with previous measurement.

• Versions:

- O NEUT 5.3.2
- O GENIE 2.8.0
- O NuWro 11

	NEUT-SF	NEUT-RFG	NEUT-RFG+RPA	NEUT-NIWG	GENIE	NUWRO	
Nuclear model	SF	RFG	RFG	RFG	RFG	LFG	
$M_A^{QE} \; [{\rm GeV/c^2}]$	1.21	1.21	1.21	1.15	0.99	1.2	
$p_F \; [{\rm MeV/c}]$	217	217	217	223	221	-	
E_B [MeV]	25	25	25	25	25	25	
MEC-Nieves %	100	100	100	27	0	100	
RPA	No	No	Yes	Yes	No	No	
DATA fit w/ NEU	Т				-		
$\chi^2 (\chi^2_{SHAPE})$	211.9 (210.1)	284.8 (242.6)	173.4 (168.1)	160.9(179.4)	191.3 (232.2)	471.4 (457.9)	NBINS = 71
DATA fit w/ GEN	IE						
$\chi^2 (\chi^2_{SHAPE})$	227.4 (221.8)	300.6 (253.4)	192.6 (182.9)	175.3 (191.2)	190.5 (224.4)	465.7 (458.5)	

Real data result:

