

Current and future measurements with electron neutrinos and electron anti-neutrinos in the T2K off-axis near detector

Sophie King On behalf of the T2K collaboration

June 2017

T2 The importance of v_{λ} measurements for oscillation experiments such as T2K $\boldsymbol{v}_{_{\rm u}}$ are signal in oscillation ($\boldsymbol{v}_{_{\rm u}}$ \rightarrow $\boldsymbol{v}_{_{e}}$) search v are largest **background** (intrinsic v beam component) \rightarrow need reliable model for cross-section and v flux Phys. Rev. D86:053003, 2012. • Theoretical differences in v_{e} and v_{u} cross sections due to lepton mass • Many $\nu_{_{\rm II}}$ cross-section Flux (/cm²/50MeV/10²¹POT 0 0 0 0 0 0 measurements $\overline{\mathbf{v}}$ -mode v-mode -ν_μ -ν_e $\nu_{\mu} = \nu_{e}$ ${\scriptstyle \bullet}$ Data for $\nu_{\rm a}$ interactions $\overline{\mathbf{v}}_{\mu}$ $\overline{\mathbf{v}}_{e}$ is more scarce Sensitivity of neutrino oscillation 10^{-3} experiments is increasing → Look to future: v cross-sections 3 E_v (GeV E_v (GeV) constrained with data

ND280 T2K off-axis near detector

2x **FGDs**

(Fine-Grained scintillator Detectors)

- target mass, vertex reconstruction

3x **TPCs**

(Time Projection Chambers) In an applied magnetic field

- momentum reconstruction
- charge identification
- Particle Identification (PID)

Ecals (Electromagnetic Calorimeters) surrounding the inner sub-detectors

- energy containment, more PID

Identify electron candidate: Perform PID using TPC and ECal (previous page)

Reject ' γ -events': $\gamma \rightarrow e^+ e^-$ { predominantly from outside of the fiducial volume (OOFV)

- Veto actvity behind vertex
- Search for paired positron ($\gamma \rightarrow e^+ e^-$) (see slide 11)
- Require mom > 200 MeV

 $\overset{-}{V}_{e} CC selection$ $^p^+ and e^+ have very similar TPC dE/dx at 1GeV$ → proton background → need additional cuts

γ control sample

'**\gamma-events'** : $\gamma \rightarrow e^+ e^-$ where a photon converts in the FGD

- \rightarrow largely from NC π^0 interactions \rightarrow large uncertainties
- \rightarrow ' γ -sample' control sample with a purity ~ 95%
- * Select e+/e- candidate (PID on slide 7)

Loop over TPC tracks to search for e+/e- pair.

- * opposite charge to first track
- * distance between the tracks

1000

1200

1400

An adapted version of this selection is used to search for NCγ in ND280 → See poster by Teppei

* γ invariant mass:

 M_{inv} < 100 MeV where

p [MeV/c]

Intrinsic $\nu_{\rm a}$ / $\bar{\nu}_{\rm a}$ component of beam

- * T2K Run 2014-2015 (v-beam)
- * Performed a fit to extract the $\nu_{_{\rm Q}}$ and $\,\bar{\nu}_{_{\rm Q}}\,$ components of the beam
- * Using v CC and $\bar{\nu}$ CC selections in FGD1 and FGD2
- \ast Gamma sample used to constrain the background scale factor for OOFV γ -background
- * Unbinned maximum likelihood simultaneous fit across 3 samples (v CC, \bar{v} CC, γ)

T2K Preliminary

					Scale fact	tor results:	
	Statistics						
# Events	FGD1+FGD2	FGD1	FGD2	$\uparrow (v_e) =$	$f(v_e) = 1.250 \pm 0.135 \text{ (stats.)} \pm 0.122 \text{ (syst.)}$		
	v _e CC			$f(\bar{v}_e) =$	$f(\bar{\nu}_{e}) = 1.142 \pm 0.144 \text{ (stats.)} \pm 0.132 \text{ (syst.)}$		
Data	208	97	111			h	
	Ū Ū			-	Detector	Flux + xsec	
	V _e CC				syst	syst	
Data	115	42	73	v _e CC	6.5%	7.5%	
	II.			$\bar{\nu}_{e}$ CC	6.5%	9.5%	11

Planned cross-section measurements with FGD1 selections

 v_{e} CC selection and \overline{v}_{e} CC selection

And v_{e} CC 0π

Splitting $\nu_{_{\rm o}}$ CC events into $~\nu_{_{\rm o}}$ CC 0π and v_{α} CC other sub-samples

Split v_{α} CC sample according to the particles that exit the nucleus (i.e. after FSI) * track multiplicity (+ TPC PID)

Michel/delayed electrons

 $V - beam selection: T2K Run 2010 - 2013 (~6x10^{20} POT v - beam)$

NOTE: plot does not include recent run period \rightarrow increased stats for measurement

Summary

Motivation

- Intrinsic v_{i} is the biggest background in $v_{i} \rightarrow v_{i}$ oscillation
- v cross-section data is scarce, want data-driven constraints in future

Status

- Selections optimised and systematics computed
- Beam component measurements done
- Planned cross-section measurements in FGD1: \bar{v}_{a} CC, v_{a} CC, \bar{v}_{a} CC0 π
 - \rightarrow Maximum log likelihood fit across signal region and control samples

Selections: \bar{v}_{e} CC (\bar{v} -beam), v_{e} CC (v-beam and \bar{v} -beam), \bar{v}_{e} CC0 π (v-beam and \bar{v} -beam)

Control samples: γ-sample , v CC-other

T2K Rns 2010-2015, good quality POT = $\sim 6x10^{20}$ POT v + $\sim 4x10^{20}$ POT \bar{v} T2K Runs 2010-2017, predicted ood quality POT = $\sim 10x10^{20}$ POT v + $\sim 7x10^{20}$ POT \bar{v}

 \rightarrow Upcoming Xsec measurements using FGD1 as target, with 2010-2017 data

 $\begin{array}{c} \text{FGD2} \ \nu_{_{e}} \ \text{CC} \\ \text{candidate} \end{array}$

FGD1 $\bar{\nu}$ CC candidate

- → FGD1 event
- \rightarrow track goes through FGD2 to ECal

FGD1 $\bar{\nu}_{_{\rm e}}$ CC candidate

- → FGD1 event
- \rightarrow track showers in FGD2

MC π^0 event display

Identify electron candidate

- Select highest momentum **FGD→ TPC track** starting in the FGD fiducial volume (FV)
- Perform PID using TPC and ECal (previous page)

Reject ' γ -events': $\gamma \rightarrow e^+ e^-$ { predominantly from outside of the fiducial volume (OOFV)

- Time of flight between FGD1 and Ecal or FGD2 \rightarrow removes OOFV tracks
- Veto upstream activity in ECal, TPC, P0D \rightarrow reject out of fiducial volume (OOFV)
- Search for paired positron ($\gamma \rightarrow e^+ e^-$) (see slide 11)
- Require mom > 200 MeV

Selection	FGD1-FGD2(%)	FGD1(%)	FGD2(%)
$CC-0\pi$	20.0	20.1	19.9
CC-Other	33.2	31.9	34.4
Gamma	28.6	30.4	27.0
Muon	4.0	3.4	4.6
Other	14.1	14.2	14.0

$\boldsymbol{\nu}_{e}\,\text{CC}$ selection

Searching for a positron instead of electron

Proton and positron/electron have very similar dE/dx in the TPC around 1GeV \rightarrow **protons form a background** to positron selection \rightarrow **need additional cuts**

T2

Figure 11: E/P for tracks with 600 MeV/c p \ge 1650 MeV/c (right) for the $\bar{\nu}_e$ selection.

23

37.7

25.0

20.4

2.1

4.3

10.4

Selection improvements since beam component measurement

 $\nu_{_{e}}$ CC / $\bar{\nu}_{_{e}}$ CC selection

Requie mom > 200 MeV (dominated by γ-events below this)
 → unless time of flight information is available

 $\bar{\nu}_{_{e}}$ CC selection

• For tracks that stop in FGD2, apply FGD PID (reject proton background)

T2K data: Run1-8

Max beam power 495kW 23 January 2010 – 12 April 2017 Nu mode: ~15e20 POT Antinu-nu made: ~8e20 POT **T2**

T2K data: Run1-6

Max beam power 371kW 23 January 2010 – 03 June 2015 Nu mode: ~7e20 POT Antinu-nu made: ~4e20 POT **T2**

More on $\,\nu_{_{\rm e}}$ / $\bar{\nu}_{_{\rm e}}\,$ beam component

Results using constraints from ND280 data

Note: Constraints not implemented on selection plots

 $\begin{array}{l} f\left(\nu_{_{\rm e}}\right) = 1.250 \pm 0.135 \; ({\rm stats.}) \pm 0.122 \; ({\rm syst.}) \\ f\left(\bar{\nu}_{_{\rm e}}\right) = 1.142 \pm 0.144 \; ({\rm stats.}) \pm 0.132 \; ({\rm syst.}) \\ f\left(\gamma\right) = 0.810 \pm 0.063 \; ({\rm stats.}) \pm 0.142 \; ({\rm syst.}) \end{array}$

Results without constraints from ND280 data

Note: This corresponds to what is seen on plots

f (ν_{e}) = 1.341 ± 0.143 (stats.) ± 0.209 (syst.) f ($\bar{\nu}_{e}$) = 1.277 ± 0.157 (stats.) ± 0.194 (syst.) f (γ) = 0.995 ± 0.072 (stats.) ± 0.243 (syst.)

Cross-section likelihood fitter

Plan to measure cross-sections: ν_{p} CC, $\bar{\nu}_{p}$ CC, ν_{p} CC0pi

Maximum log liklihood fit across signal region and control samples

- \rightarrow fit performed in reconstructed variables
- \rightarrow fitting the signal component in each true bin
- \rightarrow some background constrained by control samples, other background fixed
- \rightarrow signal split into true regions/bins which are constructed of recon bins
- \rightarrow background in recon bins
- \rightarrow PDFs built in reco bins \rightarrow KDE to smooth PDFs
- * Detector systematics treated as nuisance parameters in the fit
 - \rightarrow detector covariance for signal and control samples provided in neccessary bins
- * Flux and interaction systematics computed by generating large number of 'throws'
 - \rightarrow covariance matrix used to vary model parameters
 - \rightarrow effect propagating using event weights
 - \rightarrow fit redone for each `throw', then all throws used to compute covariance
- * Statistical `throws' generating by varying bins according to poisson statistics

2014 T2K ν_{P} CC measurement

T2K: v_{p} CC inclusive cross-section

Phys Rev Lett 113,241803 (2014)

Gargamelle v_e and \overline{v}_e CC inclusive (included on plot) Nucl Phys B 133, 1978 T2K Run 2010-2013 (v-beam)

Good quality data collected from 5.9x10²⁰ protons on target (POT)

Predicted # signal evts:	245
Predicted Purity:	65%
Predicted Efficiency:	27%

Bayesian unfolding + bkg subtraction

Photon conversion ('γ') control sample
→ constrain interactions outside
fiducial volume → 95% pure

Flux-av. $\sigma = [1.11 \pm 0.09 \text{ (stat)} \pm 0.18 \text{ (syst)}]$ x10⁻³⁸ cm²/nucleon

> → agrees with Gargamelle result, as well as both the 31 NEUT and GENIE predictions

Systematic error at SK

TABLE II. Systematic uncertainty on the predicted event rate at the far detector.

Source (%)	$ u_{\mu}$	ν_e	$\bar{ u}_{\mu}$	$\bar{\nu}_e$
ND280-unconstrained cross section	0.7	3.0	0.8	3.3
Flux and ND280-constrained cross section	2.8	2.9	3.3	3.2
Super-Kamiokande detector systematics	3.9	2.4	3.3	3.1
Final or secondary hadron interactions	1.5	2.5	2.1	2.5
Total	5.0	5.4	5.2	6.2

Predicted event rate at SK

TABLE XIX: Predicted number of ν_{μ} CC candidates and ν_{e} CC candidates for an exposure of 6.57 ×10²⁰ POT with and without oscillations and with oscillations using the typical parameter values: $\sin^{2} \theta_{12} = 0.306$, $\Delta m_{21}^{2} = 7.5 \times 10^{-5} \text{ eV}^{2}/c^{4}$, $\sin^{2} \theta_{23} = 0.5$, $\Delta m_{32}^{2} = 2.4 \times 10^{-3} \text{ eV}^{2}/c^{4}$, $\sin^{2} \theta_{13} = 0.0243$, $\delta_{CP} = 0$ and normal mass hierarchy. The total numbers are broken down into the intrinsic beam components (those without an arrow) and oscillated components.

	ν_{μ}	CC	ν_e	$\nu_e CC$		
	Osc.	No osc.	Osc.	No osc.		
ν_{μ}	116.46	431.77	0.94	1.38		
$\nu_e \rightarrow \nu_\mu$	0.16	0	0.00	0		
$\bar{\nu}_{\mu}$	7.81	13.92	0.05	0.06		
ν_e	0.26	0.27	3.13	3.38		
$\nu_{\mu} \rightarrow \nu_{e}$	0.26	0	16.55	0		
$\bar{\nu}_e$	0.02	0.02	0.15	0.16		
$\bar{\nu}_{\mu} \rightarrow \bar{\nu_e}$	0.00	0	0.22	0		
Total	124.98	445.98	21.06	4.97		