Recent results from MicroBooNE

Andy Furmanski for the MicroBooNE collaboration June 26th 2017 NuInt 2017, Toronto, Canada

SBN (an aside)

MANCHESTER 1824 The University of Manchester

measurements

0

0.5

1.5

1

4.5

E, (GeV)

2.5

2

3.5

3

SBN (an aside)

MicroBooNE in one slide

R. Acciarri et al 2017 JINST 12 P02017

- 170 tons of liquid argon
 50% inside the TPC
- 32 eight-inch PMTs for scintillation light (fast)
- 10.4 m x 2.6 m x 2.3 m TPC (70 kV: 273 V/cm)
- PMTs used for online triggering (don't save every event)
- TPC drift time ~2ms

cosmic rate ~200 m⁻²s⁻¹: ~8 muons per drift time

Last time at Nulnt

Andy Furmanski

5

Detector performance

- Stable performance of TPC, readout electronics, and PMT system
- Purity stable and well above design
 - Consistently above 10 ms free electron lifetime

Detector noise

- Noise fully characterised
 Filtered out in software
 - Peak S/N ratio >30!
- Added hardware filtering in summer 2016

Cosmic Ray Tagger

- Cosmic Ray Tagger (CRT) installed
- Phased installation over the past year
- 85% coverage

Beam Performance

- Nominal 3-year POT delivered in 2 years!
- Only 5e19 POT analysed so far

Ok, now for some physics!

CC inclusive event selection

- Require PMT activity (>50PE) in time with the beam spill
- Then 2 selections developed

Event candidates

Event candidates

Event candidates

Muon Candidate Kinematics

Particle Multiplicity Measurement

- Start with selection I (contained interactions)
 - No multiplicity-dependent cuts
- What we do Additional (conservative) track/vertex quality requirements
 - Focusing on the collection plane (best S/N)
- Fit neutrino and cosmic component in 4 samples of varying purity
- Count tracks associated with vertex

- **Do not** correct for efficiency, acceptance, missing tracks, split tracks
- **Do not** separate particle types
- **Do not** subtract background (NC, anti-nu)
- Systematics not final
 - Conservative estimates made for detector and beam uncertainties

Andv Furmanski

What we don't do

Particle Multiplicity Results

- **Good agreement** seen with GENIE default and 2 alternate QE-like models
- Relatively high proton threshold
 - Interesting to see how this distribution changes as this is reduced
 - Next iteration already has a reduced proton threshold
- Statistics-limited at higher multiplicities, but can track 4 or 5 particles!

Future Inclusive Results

- Current event selections limit the phase space
 - To remove large cosmic backgrounds
 - Updated event selection uses improved PMT-TPC matching
 - Utilise new **Cosmic Ray Tagger**!
- Muon threshold high
 - 75cm threshold reduces $NC\pi^{\scriptscriptstyle +}$ backgrounds
 - $-\mu/\pi$ separation in development
- Improved statistics
 - 12 times what is shown here

Other analyses in development

- NC elastic (~20k events on tape)
 - Lower threshold for proton detection than finegrained scintillators
- CCπ⁰ (~10k events on tape)

- Very important for oscillation analysis

CC0π (~100k events on tape)

 $-1\mu1p$, $1\mu2p$, proton multiplicity

• Watch this space!

http://www-microboone.fnal.gov/publications/publicnotes/index.html

Thank you

Backup slides

Efficiencies

Selection I distributions

CPM tests

Figure 6: Diagram of MCS directionality test for a candidate muon track.

MANCHESTER 1824

Andy Furmanski

The University of Manchester

CPM fit

- Float number of neutrino and CR events in each bin
- Float probabilities of passing/failing each test
- Fit to data results in 4 categories (P,P) (P,F) (F,P) (F,F)

	Fit Results	
Parameters	BNB+Cosmic MC	MicroBooNE Data
$\hat{N}_{oldsymbol{ u}}$	$3602{\pm}154$	$1056{\pm}169$
\hat{N}_{CR}	$607 {\pm} 144$	$865{\pm}169$
\hat{N}'_{CR}	$5267{\pm}73$	$5267{\pm}73$
P(PH)	$0.859{\pm}0.017$	$0.784{\pm}0.052$
P(MCS)	$0.775 {\pm} 0.012$	$0.732{\pm}~0.038$
Q(PH)	$0.554{\pm}0.007$	$0.554{\pm}0.007$
Q(MCS)	$0.544{\pm}0.007$	$0.544 \pm\ 0.007$

