29/06/17

To CCQE and Beyond

The latest charged-current pionless cross-section measurements from T2K

Stephen Dolan

For the T2K Collaboration

s.dolan@physics.ox.ac.uk

Stephen Dolan

NuInt 2017, Toronto, Canada

Overview

- T2K and ND280
- CC0 π cross-section results at T2K
- Cross sections using proton information
 - CC0 π using proton kinematics
 - CC0 π using transverse kinematic imbalance
- Future work and Summary

The T2K Experiment

Neutrino Interactions at T2K

What can we measure

NuInt 2017, Toronto, Canada

ND280 (off axis)

NuInt 2017, Toronto, Canada

Stephen Dolan

NuInt 2017, Toronto, Canada

Stephen Dolan

NuInt 2017, Toronto, Canada

Previously at T2K ...

- T2K and ND280
- CC0 π cross-section results at T2K
- Cross sections using proton information
 - CC0 π using proton kinematics
 - CC0 π using transverse kinematic imbalance
- Future work and Summary

ND280 Off-Axis CC0 π Result

- Uses FGD1 as a CH target alongside TPC for tracking
- Flux-integrated doubledifferential CC0 π cross section $\frac{|\mathbf{r}|^2}{|\mathbf{r}|^2}$ $\frac{0.4}{0.2}$ in final-state muon kinematic variables $(p_{\mu}, \cos(\theta_{\mu}))$
- Split into two analyses with different selection and cross-section extraction strategies
 - Good agreement
- Results compared to the Nieves and Martini models with/without 2p2h

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009) M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 81, 045502 (2010)

J. Nieves, I. R. Simo, and M. V. Vacas, Phys. Lett. B **707**, 72 (2012). J. Nieves, F. Sanchez, I. Ruiz Simo, and M. Vicente Vacas, Phys. Rev. D **85**, 113008 (2012)

Detector: ND280 – FGD1 **Target**: CH **Signal**: CC0 π **Variables**: μ -kinematics **Status**: Phys. Rev. D **93**, 112012

ND280 Off-Axis CC0 π Result

- Uses PØD as a water target alongside TPC for tracking
- Flux-integrated doubledifferential $CC0\pi$ cross section in final-state muon kinematic variables $(p_{\mu}, \cos(\theta_{\mu}))$
- Can also compare to FGD1 $CC0\pi$ on Carbon result
- Similar studies underway using FGD2 water layers to extract Oxygen:Carbon cross-section ratio
- More details in these
 proceedings: <u>ICHEP16</u>, <u>NuFact16</u>

Detector: ND280 – PØD **Target:** Water **Signal:** $CC0\pi$ **Variables:** μ -kinematics **Status:** Paper in preparation

What next?

- Would like to disentangle the role of separate nuclear effects and the free nucleon cross-section.
- Current results provide an important piece of the puzzle but further complementary measurements are needed...

Measuring proton kinematics

- T2K and ND280
- CC0 π cross-section results at T2K
- Cross sections using proton information
 - CC0 π using proton kinematics
 - CC0 π using transverse kinematic imbalance
- Future work and Summary

Measuring proton kinematics

- μ -kinematics only tell us everything about $\nu + N$ scattering assuming a **stationary target** and an **elastic scatter**
- Proton kinematics allows a new handle on nuclear effects
- Simulations have weak predictive power to describe proton kinematics
 - Nuclear effects are very difficult to model
 - First time looking at proton predictions for T2K
 - Essential to ensure minimal dependence on simulation
 - Measure fiducial cross section
 - Minimise role of MC in unfolding

Event Selection

- Require one μ-like and p-like track(s) starting in FGD1 (CH target)
- Use a Michel electron tag and ECal EM shower veto to reject 1π backgrounds
- Use of many samples gives wide kinematic acceptance

Sidebands

 Require extra π-like track(s)

J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011)

Stephen Dolan

NuInt 2017, Toronto, Canada

A request from yesterdays GiBUU talk

$CC0\pi$ using $\mu + p$ kinematics

Measure fiducial flux-integrated **CCO** π + Np cross section in bins of $\cos(\theta_{\mu}), \cos(\theta_{p}), p_{p}$

Subset of bins shown – full binning covers all kinematic phase-space with $p_p > 500 MeV/c$

Detector: ND280 – FGD1 Target: CH Signal: CC0 π +Np Variables: μ + p kinematics Status: Paper in preparation

NuInt 2017, Toronto, Canada

$CC0\pi$ using $\mu + p$ kinematics

- Cross-section extraction method also allows simultaneous extraction of number of protons with $p_p > 500 \ MeV/c$
- Observe interesting excess over GENIE prediction (which has no 2p2h contribution)

Detector: ND280 – FGD1 **Target:** CH **Signal:** CC0 π +Np **Variables:** μ + p kinematics **Status:** Paper in preparation

Stephen Dolan

NuInt 2017, Toronto, Canada

Single Transverse Variables

Detector: ND280 – FGD1 **Target:** CH **Signal:** CC0*π*+Np **Variables:** single-transverse **Status:** Paper in preparation

Stephen Dolan

NuInt 2017, Toronto, Canada

T2K

Stephen Dolan

NuInt 2017, Toronto, Canada

Stephen Dolan

NuInt 2017, Toronto, Canada

Z

$CC0\pi + Np \text{ in } STV$

- Measure fiducial flux-integrated $CC0\pi + Np$ cross section **in bins of STV**
- Restrict cross section to ND280 acceptance -
 - Essential to mitigate model-dependence of acceptance correction

```
₹

VOTSANC<sup>®</sup>
```

 $p_{\mu} > 250 \; MeV/c$ $\cos(\theta_{\mu}) > -0.6$ $450 \ MeV/c < p_{\mu} < 1 \ GeV/c$ $\cos(\theta_p) > 0.4$

- Extract cross section using a binned likelihood fit with a **data driven** regularisation
- Compare results to predictions available from plethora of generators using NUISANCE

Detector: ND280 – FGD1 **Target:** CH **Signal:** CC0 π +Np **Variables:** single-transverse **Status:** Paper in preparation

$CC0\pi + Np \text{ in STV}$

- Measure fiducial flux-integrated $CC0\pi + Np$ cross section **in bins of STV**
- Restrict cross section to ND280 acceptance -
 - Essential to mitigate model-dependence of acceptance correction

A DISANC®

 $p_{\mu} > 250 \; MeV/c$ $\cos(\theta_{\mu}) > -0.6$ $450 \ MeV/c < p_{\mu} < 1 \ GeV/c$ $\cos(\theta_p) > 0.4$

- Extract cross section using a binned likelihood fit with a data driven regularisation
- Compare results to predictions available from plethora of generators using NUISANCE
- Prepare for some franken-models!

Detector: ND280 – FGD1 **Target:** CH **Signal:** CC0 π +Np **Variables:** single-transverse **Status:** Paper in preparation

Stephen Dolan

NuInt 2017, Toronto, Canada

The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.

Stephen Dolan

TZK

- The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.
- The tails in δp_T and $\delta \phi_T$ and the extent of the rise at large $\delta \alpha_T$ partially isolate the effects of Fermi Motion from **2p2h**.

- The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.
- The tails in δp_T and $\delta \phi_T$ and the extent of the rise at large $\delta \alpha_T$ partially isolate the effects of Fermi Motion from **2p2h**.
- Weaker **FSI** causes a relative deficit of events in the tails, but an increased normalisation.

Generator Comparisons

- Plenty of separation
- Result disfavours a `Fermi cliff' in δp_T
- GENIE shape in first bin of each STV related to FSI model ("hA")
 - Nuclear effect isolation

Future work and Summary

- T2K and ND280
- CC0 π cross-section results at T2K
- Cross sections using proton information
 CC0π using proton kinematics
 - CC0 π using transverse kinematic imbalance
- Future work and Summary

Future work with protons

 $CC0\pi$ and inferred kinematic imbalance

- Under stationary target and elastic scattering assumptions can infer proton kinematics from measured μ
- Non-zero imbalance between inference and measured proton indicates presence of nuclear effects or CC-non-QE interaction
- Measure (using FGD1 as a CH target with TPCs for tracking):

NuInt 2017, Toronto, Canada

- 4π angular coverage (See Alfonso's CCInc talk)
 - Make more use of the ECals and TOF information
 - Can achieve ~ 4π acceptance with reasonable ϵ

- 4π angular coverage (See Alfonso's CCInc talk)
 - Make more use of the ECals and TOF information
 - Can achieve ~ 4π acceptance with reasonable ϵ
- CC0 $\pi v + \overline{v}$ joint analysis
 - 2p2h contribution may be different for ν and $\bar{\nu}$ *
 - Aim to extract $v + \bar{v}$ sum, difference, asymmetry

Detector: ND280 – FGD1 **Target:** CH **Signal:** $CC0\pi$ **Variables:** μ -kinematics

- 4π angular coverage (See Alfonso's CCInc talk)
 - Make more use of the ECals and TOF information
 - Can achieve ~ 4π acceptance with reasonable ϵ
- CC0 $\pi v + \overline{v}$ joint analysis
 - 2p2h contribution may be different for ν and $\bar{\nu}$ *
 - Aim to extract $v + \bar{v}$ sum, difference, asymmetry

Detector: ND280 – FGD1 **Target:** CH **Signal:** $CC0\pi$ **Variables:** μ -kinematics

- $\overline{\nu}$ CC0 π on water using PØD
 - Use PØD to measure $\bar{\nu}$ on water to complement CH result above

Detector: ND280 – PØD **Target:** Water **Signal:** $CC0\pi$ **Variables:** μ -kinematics

Backward

HighAngle

- 4π angular coverage (See Alfonso's CCInc talk)
 - Make more use of the ECals and TOF information
 - Can achieve ~ 4π acceptance with reasonable ϵ
- CC0 $\pi v + \overline{v}$ joint analysis
 - 2p2h contribution may be different for ν and $\bar{\nu}$ *
 - Aim to extract $v + \bar{v}$ sum, difference, asymmetry

Detector: ND280 – FGD1 **Target:** CH **Signal:** $CC0\pi$ **Variables:** μ -kinematics

- $\overline{\nu}$ CC0 π on water using PØD
 - Use PØD to measure $\bar{\nu}$ on water to complement CH result above

Detector: ND280 – PØD **Target:** Water **Signal:** $CC0\pi$ **Variables:** μ -kinematics

• $\nu CC0\pi$ on water using FGD2

• Use FGD2 water layers to measure $CC0\pi$ on water

Detector: ND280 – FGD2 **Target:** Water **Signal:** $CC0\pi$ **Variables:** μ -kinematics

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Backward

bare RPA

bare

HighAngle

0.

0.3 OE

bth 0.2

v-layer

- 4π angular coverage (See Alfonso's CCInc talk)
 - Make more use of the ECals and TOF information
 - Can achieve ~ 4π acceptance with reasonable ϵ
- CC0 $\pi v + \overline{v}$ joint analysis
 - 2p2h contribution may be different for ν and $\bar{\nu}$ *
 - Aim to extract $v + \bar{v}$ sum, difference, asymmetry

Detector: ND280 – FGD1 **Target:** CH **Signal:** CC0 π **Variables:** μ -kinematics

- $\overline{\nu}$ CC0 π on water using PØD
 - Use PØD to measure $\bar{\nu}$ on water to complement CH result above

Detector: ND280 – PØD **Target:** Water **Signal:** $CC0\pi$ **Variables:** μ -kinematics

• $\nu CC0\pi$ on water using FGD2

• Use FGD2 water layers to measure $CC0\pi$ on water

Detector: ND280 – FGD2 **Target**: Water **Signal**: $CC0\pi$ **Variables**: μ -kinematics

• INGRID CC0 π Analysis

• Use INGRID ($E_{v}^{peak} \sim 1.2 \text{ GeV}$) to compliment FGD1 analysis ($E_{v}^{peak} \sim 0.6 \text{ GeV}$)

Detector: INGRID **Target:** CH **Signal:** $CC0\pi$ **Variables:** μ -kinematics

Backward

HighAngle

* M Martini: E_v(Uev) PHYSICAL REVIEW C **80**, 065501, PHYSICAL REVIEW C **81**, 045502

- 4π angular coverage (See Alfonso's CCInc talk)
 - Make more use of the ECals and TOF information
 - Can achieve ~ 4π acceptance with reasonable ϵ
- CC0 $\pi v + \overline{v}$ joint analysis
 - 2p2h contribution may be different for ν and $\bar{\nu}$ *
 - Aim to extract $v + \bar{v}$ sum, difference, asymmetry

Detector: ND280 – FGD1 **Target:** CH **Signal:** CC0 π **Variables:** μ -kinematics

- $\overline{\nu}$ CC0 π on water using PØD
 - Use PØD to measure $\bar{\nu}$ on water to complement CH result above

Detector: ND280 – PØD **Target:** Water **Signal:** $CC0\pi$ **Variables:** μ -kinematics

- $vCC0\pi$ on water using FGD2
 - Use FGD2 water layers to measure $CC0\pi$ on water

Detector: ND280 – FGD2 **Target**: Water **Signal**: $CC0\pi$ **Variables**: μ -kinematics

- INGRID CC0 π Analysis
 - Use INGRID ($E_{\nu}^{peak} \sim 1.2 \text{ GeV}$) to compliment FGD1 analysis ($E_{\nu}^{peak} \sim 0.6 \text{ GeV}$)

Detector: INGRID **Target:** CH **Signal:** $CC0\pi$ **Variables:** μ -kinematics

Combine it all! Detector: FGD1+2 (+ INGRID) Target: CH+H₂O Signal: CC0*π*(+Np) Variables: ???

Backward

HighAngle

Summary

- T2K is measuring cross sections of exclusive final-state topologies
- New techniques in use to complement each other and existing results
 - Analyses specifically engineered to probe nuclear effects
- T2K has made its first measurements using **proton kinematics**
 - Including a measure of **single-transverse kinematic imbalance**
 - Interesting model separation and nuclear effect isolation
- Many more results coming soon!

Stephen Dolan

NuInt 2017, Toronto, Canada

Thank you for listening

Stephen Dolan

NuInt 2017, Toronto, Canada

BACKUPS

Stephen Dolan

NuInt 2017, Toronto, Canada

Data Collection

(POT = Protons On Target)

- Continuous rise in beam power from ~225 kW (2014) to ~450 kW (2017)
- Using this to make world leading measurements of oscillation parameters (see talk by Raj Shah)

v-Interactions and Osc. Analysis

Fractional error on the number of expected events at SK with and without ND280

	$ u_{\mu} \text{ sample}$ 1R $_{\mu}$ FHC	$ u_{e}$ sample 1R _e FHC	$ar{ u}_{\mu}$ sample 1R _µ RHC	$ar{ u}_{ extsf{e}}$ sample 1R _e RHC
ν flux w/o ND280	7,6%	8,9%	7,1%	8,0%
ν flux with ND280	3,6%	3,6%	3,8%	3,8%
ν cross section w/o ND280	7,7%	7,2%	9,3%	10,1%
u cross section with ND280	4,1%	5,1%	4,2%	5,5%
ν flux+cross section	2,9%	4,2%	3,4%	4,6%
Final or secondary hadron int.	1,5%	2,5%	2,1%	2,5%
Super-K detector	3,9%	2,4%	3,3%	3,1%
Total w/o ND280	12,0%	11,9%	12,5%	13,7%
Total with ND280	5,0%	5,4%	5,2%	6,2%

• Largest systematic uncertainty comes from neutrino interaction uncertainties

Neutrino Interactions and OA

• Oscillation analysis (OA) requires E_{ν} spectrum (or similar)

$$N_{\textit{pred}}(E_{\nu}^{\textit{reco}}) = \Phi(E_{\nu}^{\textit{true}}) \sigma(E_{\nu}^{\textit{true}}) P(\alpha \rightarrow \beta, E_{\nu}^{\textit{true}}) \epsilon(E_{\nu}^{\textit{true}}) S(E_{\nu}^{\textit{true}}, E_{\nu}^{\textit{reco}})$$

 Our largest OA systematic comes from neutrino interaction uncertainties (4%-6% out of 5%-7%)

Neutrino Interactions and OA

0.12

0.10

CCOF

2p2h

Find E_{ν}^{reco} using observed μ at SK assuming stationary target and elastic scattering o.d.f.

$$E_{\nu}^{reco} = \frac{m_p^2 - m_n^2 - m_{\mu}^2 + 2m_n E_{\mu}}{2(m_n - E_{\mu} + p_{\mu} \cos(\theta_{\mu}))}$$

Bias due to:

- Fermi motion in the initial nuclear state
- Nucleon-nucleon correlations

+

Diagrams by Patrick Stowell

CCnonQE contamination in the selection. •

NEUT MC,

0.4

0.6 0.8

 $(E_v^{rec}/E_v^{true}) - 1$

1.0

Super-K 1 ring μ -

like selection

Free

Nucleon

Interaction Modes in all $CC0\pi$ events at ND280 (NEUT):

Interaction Modes in selected 1 ring μ -like events at SuperK(NEUT):

- Off-axis v_{μ} beam
 - Tightly-peaked at 600 MeV 2.5° off-axis towards SK
 - Low contamination from non- ν_{μ} components
 - Flux estimation aided by hadron production measurements from NA61/SHINE at CERN

Phys. Rev. D 87, 012001

NuInt 2017, Toronto, Canada

ND280 Off-Axis CC0 π Result

ND280 Off-Axis CC0 π Result

- Results compared to Martini et al. model with(red)/without(black) 2p2h
- Data prefer a 2p2h contribution

NuInt 2017, Toronto, Canada

$CC0\pi$ in STV - Fermi Motion and FSI

Moving from CCQE→CC0Pi+Np, STV still a probe of nuclear effects

Quasi-real CCOPi selection, keep events within rough ND280 acceptance : No Pions, 1 Muon, >0 Protons. $p_{\mu} > 250 \text{ MeV}, p_p > 450 \text{ MeV}, \cos(\theta_{\mu}) > -0.6, \cos(\theta_p) > 0.4$

$CC0\pi$ in STV - 2p2h and M_A

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009)

J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011)

- STV shape invariant with M_A
 - No ambiguity over M_A or nuclear effect contributions (MiniBooNE M_A puzzle)

Reconstructing the Neutrino Direction

Stephen Dolan

NuInt 2017, Toronto, Canada

$CC0\pi$ water cross section

- Isolate CC0 π events starting in the PØD, but use TPC for tracking
- Separate data taking periods into when PØD water target is full/empty
 - Subtract to get water cross section

- Construct **CC0** π flux integrated double-differential cross section in p_{μ} , $\cos(\theta_{\mu})$
 - Compare MC predictions
- Compare to FGD1 CC0π on Carbon result
- Similar studies underway using FGD2 water layers to extract Oxygen:Carbon cross section ratio

Stephen Dolan

$CC0\pi$ and inferred kinematic imbalance

- Measure inferred kinematics in bins of p_{μ} , $\cos(\theta_{\mu})$
- Restrict proton phase-space: $p_p > 450 \ MeV/c, \cos(\theta_p) > 0.4$
- Fake data: GENIE*
- Nominal MC: NEUT

