Inclusive v-A CC Interactions in the NOvA Near Detector

Jonathan Paley, for the NOvA Collaboration

NuINT 2017, Toronto

June 26, 2017

Outline

- Overview of the NOvA beam, detector and simulation
- Measurements:

ν_μ CC inclusive phase space, event selection, efficiency, purity and prelimina systematics efficiency, purity and preliminary systematics

Summary and outlook

- Off-axis position w.r.t. NuMI beam θ results in:
 - narrow-band beam centered around 2 GeV
 - small flux shape uncertainties. Hadron production uncertainties are mostly a normalization effect.
 - 95% pure v_{μ} beam

- Even with a narrow band beam, NOvA is still sensitive to many different nu+A interaction channels.
- Cross sections in NOvA's energy range are not well measured, no measurements below 3 GeV for antineutrinos.

- Even with a narrow band beam, NOvA is still sensitive to many different nu+A interaction channels.
- Cross sections in NOvA's energy range are not well measured, no measurements below 3 GeV for antineutrinos.
- Nice overlap with other currently running experiments.

The NOvA Near Detector

7

Simulation

We make use of the GENIE

reweighting scheme to assess

v_{μ} CC inclusive

v_{μ} CC inclusive - Overview

• $\sigma(E)$ and flux-averaged $d^2\sigma/dT_{\mu}dcos\theta_{\mu}$

$$\sigma(E_i) = \frac{\sum_j U_{ij} \left(N^{\text{sel}}(E_j) - N^{\text{bkg}}(E_j) \right)}{\epsilon(E_i) N_{\text{target}} \phi(E_i)}$$
$$\left(\frac{d^2 \sigma}{d \cos \theta_{\mu} dT_{\mu}}\right)_i = \frac{\sum_j U_{ij} (N^{\text{sel}}(\cos \theta_{\mu}, T_{\mu})_j - N^{\text{bkg}}(\cos \theta_{\mu}, T_{\mu})_j)}{\epsilon(\cos \theta_{\mu}, T_{\mu})_i (\Delta \cos \theta_{\mu})_i (\Delta T_{\mu})_i N_{\text{target}} \phi}$$

- Measurements are kinematically restricted to the filled phase space to the right due to limited statistics and low efficiency.
- Neutrino energies also restricted to be between 0.7 and 4 GeV.

v_{μ} CC inclusive - Reco + Selection

- Hits associated in time and space are used to form a candidate interaction. Tracks and showers are reconstructed from these hits.
- Vertices are also reconstructed; in this analysis, the start of the reconstructed muon track is defined as the vertex.

v_{μ} CC inclusive - Reco + Selection

- Fiducial volume is well defined (blue solid box), we exclude the muon catcher.
- Containment uses nearest projected distance to an edge, the dashed box above is a rough approximation of the volume. Note, events with hadronic activity in or near the muon catcher are excluded.

v_{μ} CC inclusive - PID

- Select events that have a muon-like track. Use a *kNN* to separate signal and background tracks based on 4 variables: Simulated selected events
 - track length
 - dE/dx along track
 - scattering along track
 - fraction of track planes w/ single particle dE/dx
- Distributions below are from 2016 oscillation analysis. This analysis will use new MC and tuning.

v_{μ} CC inclusive - Selection Efficiency (w/ Uncertainties)

- Error bands include nearly all systematics.
- Muon ID efficiency after all other cuts is very flat vs. energy. Selection efficiency is dominated by containment.
- Uncertainties are <~ 10%.

v_µ CC inclusive - Backgrounds (w/ Uncertainties)

• Dominant xsec and FSI systematics only shown in plot on left. Dominant flux systematics only shown in plot on right.

🚰 Fermilab

- Backgrounds are small near the 2 GeV peak, larger in the tails of the spectrum.
- Uncertainties are at the level of a few %.

v_{μ} CC inclusive - Summary of Uncertainties

• Statistical uncertainties are typically < 2%

 Systematics are still being assessed, but we expect for the differential measurement ~10% highly correlated (normalization) flux uncertainties, and all others systematics combined to be 5-8%.

🚰 Fermilab

• $\sigma(E)$ measurement systematics will be similar, although systematics from energy scale uncertainties will be larger on the rising and falling edges of the spectrum.

ve CC inclusive

ve CC inclusive - Overview

- σ vs. E and flux-averaged $d\sigma/dT_e,~d\sigma/dcos\theta_e$ for energies between 1 and 3 GeV.
- Challenging because (by design) there are ~1% of ν_e
- We have shown preliminary results on this channel in the past. That analysis is now superseded with a different approach using the event identification algorithm that the v_e appearance oscillation analysis developed.

- Use progress in image recognition technology via a convolutional neural network (CNN), where a series of *learned* image filters are applied to hit map images to extract features associated with an interaction in our detector.
- Different filters

 highlight the
 topological features
 of the different types
 of neutrino
 interactions.
- A convolutional visual network (CVN) is then trained on these filters.

- Use progress in image recognition technology via a convolutional neural network (CNN), where a series of *learned* image filters are applied to hit map images to extract features associated with an interaction in our detector.
- Different filters

 highlight the
 topological features
 of the different types
 of neutrino
 interactions.
- A convolutional visual network (CVN) is then trained on these filters.

- Currently using a cut (CVN > 0.85) that optimizes the FoM of $S/\sqrt{(S+B)}$.
- Backgrounds are significant, and we are investigating potential datadriven constraints.

Interaction	Fraction (%)		
v _e CC	51.2		
Anti-v _e CC	4.4		
v _µ CC	21.1		
NC	23.0		
Other	0.18		

ve CC inclusive - Efficiency and Purity

- Xsec, FSI and calibration systematics included in the error bands.
- Uncertainties on efficiency and backgrounds is between 5-10%.
- Data-driven constraints on the efficiency and backgrounds are being explored.
 Fermilab

ve CC inclusive - Data-Driven Efficiency Cross Check

ve CC inclusive - Selection Efficiency

ve CC inclusive - Selection Efficiency

ve CC inclusive - Selection Efficiency

Looking Forward and Summary

- NOvA's high rate of neutrino interactions in the ND, off-axis narrowband beam, and excellent tracking capabilities provide excellent opportunities to make precision measurements of nu+A interactions.
- 8x10²⁰ POT neutrino ND data set, aiming for results this year for systematics-limited (~10%) measurements:
 - v_{μ} CC inclusive flux-integrated double-differential cross section.
 - v_e CC inclusive flux-integrated single-differential cross section.
- We have also collected 3x10²⁰ POT antineutrino data. Inclusive measurements of these data are a high priority for NOvA.
- Future ratios of semi-inclusive measurements w.r.t. these inclusive measurements will significantly reduce flux and other uncertainties.
- Stay tuned for results soon!

The Relevance of Cross Sections for NOvA

We rely on the simulation, which has models for cross sections and final state interactions (FSI), to calibrate measured visible hadronic energy to true hadronic energy.

$$N_{\rm ND}(E_{\nu_i}) = \Phi_{\rm ND}(E_{\nu_i}) \times \sigma(E_{\nu_i}, A_{\rm ND}) \times \epsilon_{\rm ND}$$
$$N_{\rm FD}(E_{\nu_j}) = \Phi_{\rm FD}(E_{\nu_j}) \times \sigma(E_{\nu_j}, A_{\rm FD}) \times \epsilon_{\rm FD} \times P_{\rm osc}(i \to j)$$

The Relevance of Cross Sections for NOvA

We rely on the simulation, which has models for cross sections and final state interactions (FSI), to calibrate measured visible hadronic energy to true hadronic energy.

$$N_{\rm ND}(E_{\nu_i}) = \Phi_{\rm ND}(E_{\nu_i}) \times \sigma(E_{\nu_i}, A_{\rm ND}) \times \epsilon_{\rm ND}$$
$$N_{\rm FD}(E_{\nu_j}) = \Phi_{\rm FD}(E_{\nu_j}) \times \sigma(E_{\nu_j}, A_{\rm FD}) \times \epsilon_{\rm FD} \times P_{\rm osc}(i \to j)$$

Acceptance and selection efficiency depends on final state topology; modeling these right in each detector requires differential rate measurements. This is particularly important for the nue appearance measurement.

v_{μ} CC inclusive - Energy Reco, Resolution and Binning

- Simulation is used to determine map between reconstructed track length and muon energy. Muon energy resolution is ~4% across all energies.
- Muon angle is w.r.t. mean direction of beam. Most muons have an angle < 200 mrad. Variable bin widths to account for resolution and statistics.

Signal Acceptance After Each Cut

Cut	QE	Res	DIS	Coh	MEC
No Reco Cut	100	100	100	100	100
Quality	99.5809	99.8644	99.8992	99.9283	99.7744
Fiducial	97.8993	96.606	94.99	97.8522	97.8391
Muon Containment	30.132	40.1186	39.8271	65.8541	39.8536
Containment	22.4443	24.0025	16.0219	44.1746	29.7765
PID	22.4244	23.9534	15.905	44.0443	29.7601
Energy Cut	22.3757	23.9398	15.8416	43.9973	29.7323
Muon Kinematics	22.3192	23.8104	15.6596	43.6449	29.6494

Fraction of Signal After Each Cut

Cut	QE	Res	DIS	Coh	MEC
No Reco Cut	29.0132	42.7038	13.8916	1.03905	13.3524
Quality	28.9566	42.7418	13.9088	1.04064	13.3522
Fiducial	29.302	42.5591	13.6129	1.04889	13.477
Muon Containment	23.3671	45.7924	14.7881	1.82895	14.2235
Containment	27.8017	43.7615	9.50243	1.95966	16.9747
PID	27.8324	43.7589	9.45187	1.95777	16.9991
Energy	27.8111	43.7958	9.42748	1.95844	17.0072
Muon Kinematics	27.8742	43.7684	9.36401	1.95209	17.0413

 Use progress in image recognition technology via a convolutional neural network (CNN), where a series of *learned* image filters are applied to hit map images to extract features associated with an interaction in our detector.

 Use progress in image recognition technology via a convolutional neural network (CNN), where a series of *learned* image filters are applied to hit map images to extract features associated with an interaction in our detector.

