RECENT RESULTS ON PION PRODUCTION AT MINERVA

Alejandro Ramírez Delgado Universidad de Guanajuato

Outline

Pions at MINERvA

Updates on
$$(\overline{\mathbf{v}})_{\mu}$$
 – CC $\pi^{\pm(0)}$

Advances on $\overline{\nu}_{\mu}$ – CC π^{-}

New Results on v_{μ} – CC π°

Pions at MINERvA

MINERVA Pion Reconstruction

MINERvA Pion Reconstruction

MINERvA Pion Reconstruction

CC Production At MINERvA

Updates on $(\overline{\nu}_{\mu})^{-} CC \pi^{\pm(0)}$

$$(\overline{\nu})_{\mu}$$
 - CC $\pi^{\pm(O)}$

Signal Definition

$$(\overline{\nu})_{\mu} - CC \pi^{\pm(O)}$$

Muon Variables

- PRD 092008 (2015) and Phys.Lett. B749 (2015) showed pion variables only.
- PRD 052005 (2016) added cross sections of muon variables.

$$(\overline{\mathbf{v}})_{\mu} - CC \pi^{\pm(O)}$$

Further Improvements

- New ν-e flux constraint (cross sections +~10%)
- Improved signal definition, $W_{true} \rightarrow W_{exp}$ (cross sections -~1-3%)

$(\overline{\mathbf{v}})_{\mu} - CC \pi^{\pm(O)}$

Further Improvements

- New v-e flux constraint (cross sections +~10%)
- Improved signal definition, $W_{true} \rightarrow W_{exp}$ (cross sections -~1-3%)

http://minerva.fnal.gov/wp-content/uploads/2017/03/Updated_1pi_data.pdf

W Redefinition

$$Q^{2} = 2E_{\nu} \left(E_{\nu} - p_{\mu} \cos \theta_{\mu\nu} \right) - m_{\mu}^{2}$$

$$W^{2} = m_{N}^{2} + 2m_{N} \left(E_{\nu} - E_{\mu}\right) - Q^{2}$$

Experimental W

$$W^{2} = m_{N}^{2} + (p_{\nu} - p_{\mu})^{2} + 2p_{n} \cdot (p_{\nu} - p_{\mu})$$

True W

Advances on $\overline{\nu}_{\mu}$ - CC π^{-} Production

Signal Definition

X = any nucleons W<1.8 GeV

$$W^2 = m_N^2 + 2m_N \left(E_\nu - E_\mu \right) - Q^2$$

\overline{v}_{μ} - CC π^{-} Reconstructed Kinematics

- Signal/background for v oscillation experiments.
- The remaining of the CC pion production channels.

New Results on v_{μ} - CC π° Production

Signal Definition

X = any nucleons

W < 1.8 GeV

 $60 \text{MeV/c} < m_{yy} < 200 \text{MeV/c}$

 $W^{2} = m_{N}^{2} + 2m_{N} \left(E_{\nu} - E_{\mu} \right) - Q^{2} \qquad m_{\gamma\gamma}^{2} = 2E_{\gamma 1}E_{\gamma 2} \left(1 - \cos \theta_{\gamma\gamma} \right)$

Signal Definition

$\nu_{\mu}CH \rightarrow \mu^{-}1\pi^{\circ}p$ Subsample

~50% of the times we see a proton in the final sample

The Muon Side

v_{μ} - CC π^{0} Cross Section Measurements

Muon Angle

Comparison with previous pion results at MINERvA.

v_{μ} - CC π^{0} Cross Section Measurements

Muon Momentum

Comparison with previous pion results at MINERvA

The Pion Side

Pion Kinetic Energy

- Enhancement at ~ 100 MeV due to $\pi^{+} \rightarrow \pi^{\circ}$ feed-in events.
- Depletion at ~240 MeV from π° absorption feed-out events.

v_{μ} - CC π^{0} Cross Section Measurements

- Enhancement at ~ 100 MeV due to $\pi^{+} \rightarrow \pi^{\circ}$ feed-in events.
- Depletion at ~240 MeV from π° absorption feed-out events.

Further Studies

 v_{μ} - CC π^0

Subsample Selected to Study Δ⁺ States

Further Results:

- pπ^o Anisotropy Study
 - Pion 2p2h Search
 - And More!

To Be Presented On July 7 During the Joint Experimental-Theoretical Physics Seminar at Fermilab

Conclusions

MINERvA is on its way to finish the whole set of CC v_{u} -induced pion reactions in CH in the LE era.

Our latest result show the importance of more and better physics models in event generators.

We are now taking data in a more intense and energetic NuMI beam $\langle E_v \rangle = 6$ GeV. We have started some of the pion analyses in this new energy region.

Thanks a Lot!

Questions?

NuInt 2017 Alejandro Ramírez - Universidad de Guanajuato

Backup

Leading Uncertainties

 $\begin{array}{l} \nu_{\mu} - CC \rightarrow \pi^{*} & \text{Detector Response - Flux - Interaction Model} \\ \hline \nu_{\mu} - CC \rightarrow \pi^{0} & \text{Statistical - Interaction Model - Background Norm. and Unfolding} \\ \hline \nu_{\mu} - CC \rightarrow \pi^{-} & \text{Interaction Model - Flux - Detector Response} \\ \hline \nu_{\mu} - CC \rightarrow \pi^{0} & \text{Interaction Model - Detector Response - Statistical} \end{array}$

Leading Uncertainties

Leading Uncertainties

In Progress

Overall Efficiencies and Purities

	Eff	Purity
ν_{μ} - CC $\rightarrow \pi^{+}$	3%	86%
$\overline{\mathbf{v}}_{\mu}$ - CC $\rightarrow \mathbf{\pi}^{\circ}$	6%	55%
$\overline{\nu}_{\mu}$ - CC $\rightarrow \pi^{-}$	7.17%	69%
ν_{μ} - CC $\rightarrow \pi^{\circ}$	8.4%	51%

v - e Flux Constraint

Phys.Rev. D93 (2016) no.11, 112007

NuInt 2017 Alejandro Ramírez - Universidad de Guanajuato

Background Summary

$\mathbf{v}_{\mu}^{}$ - CC $\rightarrow \mathbf{\pi}^{+}$	 69% pions with W>1.8GeV 19% from protons misidentified as pions. 9% from events with Enu > 10GeV 3% other.
$\overline{\mathbf{v}}_{\mu}$ - CC $\rightarrow \mathbf{\pi}^{\circ}$	 70% from events with at least 1π° 30% events with π⁻ and neutron-induced ionizations.
ν _μ - CC → π ⁻	 Non-cc1pi⁻ background. cc1pi- background where the proton is misidentified as π⁻
$ν_μ$ - CC → $π^\circ$	 57% No π° + with charged mesons. 20% at least 1π° + mesons. 20% from proton and neutron-induced ionizations. 3% others.

GENIE 2.8.4 With Tuning

Event Reweighting

- Δ^{**}(1232) Anisotropic Decay Reweight*
- Reweight all CC-NonRES 1π channels with 0.43†
- Reweight all CC-RES with 1.15†

Other Changes

- $M_A^{RES} = 1.12 \rightarrow 0.94 \text{ GeV}^{\dagger}$
- Additional QE-Like 2p2h events‡

GENIE 2.8.4 With Tuning

Reduced Systematics

- Anisotropic decay reweight
- $M_A^{RES} = 20\% \rightarrow 5\%^{\dagger}$
- Norm (Non-RES 1π) = 50% \rightarrow 4%†
- New Systematic: CC-RES Norm: 7%†
 References:
 - * Phys. Rev. D 92, 092008 (2015)
 - * Eur. Phys. J. C 76, 8, 474 (2016)
 - * Phys. Rev. D 88, 113007 (2013)

GENIE / NuWro Comparison

GENIE 2.8.4 (tuned)	NuWro 17.01	
-Relativistic Fermi gas	-Relativistic Fermi gas	Nuclear Model
-Rein-Sehgal	- ∆(1232)	Resonance
-Bodek-Yang	-Bodek-Yang	DIS
-Effective cascade	-Full cascade	FSI Model

Some Additions to GENIE 2.8.4 Since GENIE 2.6.2

- Implementation of a Meson Exchange Current (MEC).
- π -, π + and n,p cross-section differences are taken into account.
- More complete modeling of pion absorption and nucleon knockout processes.
- Kaon re-scattering.
- Inelastic reactions now treated as quasielastic. Angle chosen from 2-body kinematics, includes binding energy and Fermi motion.

v_{μ} - CC π^{\pm} Hadronic Invariant Mass

$\overline{\mathbf{v}}_{\mu}$ - CC $\mathbf{\pi}^{0}$

π° Invariant Mass

$\overline{\mathbf{v}}_{\mathbf{u}}$ - **CC** π^{-} Hadronic Invariant Mass

NuInt 2017 Alejandro Ramírez - Universidad de Guanajuato

v_{μ} - CC π^{0} π^{0} Invariant Mass

Cross Section Measurements

 \mathbf{Q}^2

Comparison with previous pion results at MINERvA

Detector Details

Other Formulae

$$\begin{split} & Q^2 = -(k-k')^2 = 2E_{\nu}(E_{\mu} - |\mathbf{p}|\cos\theta_{\mu}) - m^2_{\mu} & \text{Momentum Transfer} \\ & W = (p+q)^2 = M^2_{\ N} + 2M_N(E_{\nu} - E_{\mu}) - Q^2 & \text{H. Invariant Mass} \\ & \mathbf{p}_{\pi}^{\ O} = \mathbf{p}_{\gamma 1} + \mathbf{p}_{\gamma 2} & \text{piO Momentum} \\ & T_{\pi}^{\ O} = E_{\pi}^{\ O} - m_{\pi}^{\ O}, \rightarrow E_{\pi}^{\ O} = \sqrt{(|\mathbf{p}_{\pi}^{\ O}|^2 - m_{\pi}^{\ O}^2)} & \text{piO Kinetic Energy} \\ & M^2_{\ \gamma \gamma} = 2E_{\gamma 1}E_{\gamma 2}(1 - \cos\theta_{\gamma \gamma}) & \text{piO Invariant Mass} \\ & M^2_{\ p\pi} = (E_p + E_{\pi})^2 - |\mathbf{p}_p + \mathbf{p}_{\pi}|^2 & \text{p*-piO Invariant Mass} \\ & E_{\nu} = E_{\mu} + E_{\gamma 1} + E_{\gamma 2} + \Sigma T_p + E_{\nu tx} + E_{extra} & \text{Neutrino Energy} \\ & (d\sigma/dX)_i = (1/T_n \Phi)(1/\Delta X_i) \Sigma_j [U_{ij} (N_j^{\ data} - N_j^{\ bkg})/\epsilon_i] & \text{Diff Cross Section} \end{split}$$

Formulae for Enu

$$E_{\nu} = E_{\mu} + E_{recoil}, \rightarrow E_{recoil} = \beta \left(\alpha \sum_{i} C_{i} E_{i} \right) \qquad \nu_{\mu} C H \rightarrow \mu^{-} \pi^{\pm} X$$

$$E_{\nu} = E_{\mu} + E_{\pi^{0}} + T_{n}, \rightarrow T_{n} = \frac{1}{2} \frac{\left[\left(E_{\mu} - p_{\mu}^{\parallel} \right) + \left(E_{\pi}^{0} - p_{\pi^{0}}^{\parallel} \right) \right]^{2} + \left(\vec{p}_{\mu}^{\perp} + \vec{p}_{\pi^{0}}^{\perp} \right)^{2}}{m_{N} - \left(E_{\mu} - p_{\mu}^{\parallel} \right) - \left(E_{\pi^{0}} - p_{\pi^{0}}^{\parallel} \right)} \quad \overline{\nu}_{\mu} CH \rightarrow \mu^{+} \pi^{0} X$$

$$E_{\nu} = E_{\mu} + E_{\pi^-} + E_{calo} \qquad \qquad \overline{\nu}_{\mu} CH \to \mu^+ \pi^- X$$

$$E_{\nu} = E_{\mu} + E_{\pi^0} + \sum T_p + E_{vertex} + E_{extra} \qquad \nu_{\mu}CH \to \mu^- \pi^0 X$$