

Constraining Pion Secondary Interaction Systematics Uncertainties at T2K Using T2K Near Detector Data

NuINT 2017 June 23-29, 2017 Toronto, Canada

Mitchell Yu (for the T2K Collaboration) Department of Physics and Astronomy, York University, Toronto

The T2K Experiment^{[1][2]}

 The Tokai-to-Kamioka experiment (T2K) uses neutrino (antineutrino) beam produced by the collision between J-PARC's 30 GeV proton beam and a graphite target • Near-far detector method to

Oscillation Analysis Strategy

- determine neutrino oscillation parameters
- Detectors placed at 2.5 degrees offaxis measuring neutrino beam peaked at 0.6 GeV

Neutrino Interactions

Neutrino Interactions in ND280^[1]

 Near detector (ND280) ECAL measures neutrino cross section & energy spectrum 3 time projection chambers (TPCs): dE/dx & track charge • 2 fine-grained detectors (FGDs): target mass Tracker Pi-zero Detector π^+ μ^{-} μ

Pion Secondary Interactions

- Pion secondary interactions (SI): pion from neutrino interactions interacts with the detector materials
- Inelastic scattering: changes the pion kinematics
- Absorption or charge exchange: pion not detected
- Recall at T2K neutrino energy
 - 60% CCQE and 15% CC-RES events
 - Cannot ignore the CC-RES topology
- Need to study π interaction with detector materials

u u **Charged-Current-Resonant-Pion-Production**

CC-RES

CCQE

FGD

Magnet voke

Magnet

coils \

v beam

need to

identify

this!

CCQE or CC-RES ?/ **CC-RES**

1. scattering (SCAT) 2. Absorption (ABS) 3. Charge exchange (CX)

T2K Pion SI Treatment^[3]

	Normalization	Shape	• External data π -C cross section • External data GEANT4.0.4 Portion Coscordo
Systematic error	error (%)	error (%)	$= \frac{700}{5}$
TPC momentum scale	0.1	0.2–5.9	
TPC momentum resolution	0.2	0.0–2.0	<u>E</u> 600
External background	1.3	0.4-8.9	ю <u>–</u> ,
Track reconstruction	0.6	0.7 - 2.1	500
TPC PID	0.02	0.0–0.7	
Michel tagging	0.6	0.3-1.6	total: elastic + inelastic + absorption
Sand interations	0.1	0.0 - 1.1	400 L charge exchange L double charge exchange
Pileup	0.4	0.3-1.6	
Pion rescattering	1.4	0.5–4.7	300
Fiducial volume target mass	0.6	0.6	
			absorption

- Pion SI: largest systematics uncertainties for T2K
- Limited external data sets available
- GEANT 4 Monte Carlo does not describe
- external data sets well

Pion SI Improvements

- Use NEUT instead of GEANT4 for pion interactions modeling at the near detector
 - NEUT is T2K's neutrino event generator
- Using near detector data to further constrain the pion SI model
 - Lots of pions produced in the near detector
 - Select pions samples that enter the FGDs and study their interactions
 - Pion kinematics reconstructed by upstream TPC

ND280 data

MC NEUT

external data planned weight $(E_{kin}^{\pi}) = \frac{1}{2}$ weight $(E_{kin}^{\pi}) =$ MC GEANT4 changes

Generator Comparison

Summary

ND280 Pion Sample

- Selected 2 independent π^+ samples based on the reconstructed information
 - To study pion interactions in the near detector
- > 80% sample purity with additional momentum cut

Near Detector Fit

- Near detector fit: piecewise likelihood maximization method:
- $L_{tot}(\vec{b}, \vec{x}, \vec{o}) = L_{pbeam}(\vec{b}) * L_{NA61}(\vec{b}) * L_{ext-\nu}(\vec{x}) * L_{ND280}(\vec{b}, \vec{x}) * L_{SK}(\vec{b}, \vec{x}, \vec{o})$
- Using the available framework perform a fit to the SI parameters – the hadron-nucleon cross sections (dials) to achieve better data/MC agreement

- Pion SI is the leading source of systematics uncertainties for T2K
- Improvements work-in-progress:
 - Neutrino interaction generator update
 - Inclusion of pion data from near detector
- This analysis strategy can also be used by other accelerator neutrino experiments to reduce pion SI systematics uncertainties

References

- K. Abe et al. The T2K Experiment. Nucl. Instrum. Meth., A659:106–135, 2011
- K. Abe et al. Precise Measurement of the Neutrino Mixing Parameter theta23 from Muon Neutrino Disappearance in an Off-axis Beam. http://arxiv.org/abs/1403.1532, 2014
- K. Abe et al. Measurement of the v_{μ} CCQE cross section with ND280 at T2K. Phys. Rev. D, 92:112003, 2015