Measurement of gamma production from a neutron beam on water

A background to neutrino-oxygen nuclear de-excitation gammas after neutral current quasielastic scattering

Corina Nantais University of Toronto

NuINT 2017

1. MOTIVATION

sterile neutrino and dark matter searches

- ±100 ns of beam timing
- fiducial volume
- reconstruction quality cuts

Cannot be easily separated by energy or timing

EXPERIMENT

3. ANALYSIS IN PROGRESS

Osaka University's RCNP (Research Center for Nuclear Physics)

water filled acrylic container (20 cm diameter, 25 cm length)

count

12000

10000

8000

6000

4000

2000

investigating several detectors: HPGe, LaBr₃(Ce), CsI(TI), and NaI(TI)

NE213 liquid scintillator for neutron flux [4]

Run 1 & 2 were tests both used NaI(TI), which was found to have poor resolution low statistics \rightarrow no ¹⁶O de-excitation gammas observed

energy (MeV)

energy (MeV)

pair production e⁺e⁻ annihilation single $(-m_e)$ and double $(-2m_e)$ escape higher energy did not result in different de-excitation gammas

- HPGe has excellent resolution, yet expensive
- LaBr₃(Ce) has good resolution
- CsI(TI) Pulse Shape Discrimination (PSD) to separate neutrons and gammas

4. OVERVIEW OF NEUTRONS ON OXYGEN

Y. Ashida¹, G. Collazuol², D. Fukuda³, A. Konaka^{4,5}, Y. Koshio³, M. Mori¹, H. Nagata³, T. Nakaya¹, C.Nantais⁶, T. Shirahige³, A. Suzuki⁷, Y. Takeuchi⁷, H. A. Tanaka⁶, R. Wendell¹, T. Yano⁶

¹Kyoto University, ²Università di Padova, ³Okayama University, ⁴RCNP, Osaka University, ⁵TRIUMF, ⁶University of Toronto, ⁷Kobe University