# MINERVA Model to Describe (Anti)Neutrino-Nucleon Scattering



Daniel Ruterbories, University of Rochester On behalf of the MINERvA Collaboration



## Neutrino Low Recoil Eavail., q3

Looking at the inclusive data, what is needed to describe our low recoil data[3]. Add Valencia 2p2h[4] and Valencia RPA[5]

#### Need added strength in "dip" region

Fit  $E_{avail.}$ ,  $q_3$  with 2D Gaussian in *true*  $q_0q_3$  space under the assumption the entire missing strength comes via the 2p2h channel.

#### How to model of the systematics of this enhancement? Additional fits varying the 2p2h and 1p1h models to modify the energy deposited in the detector. 1) Fit with ONLY nucleon-nucleon initial state of the same type varied (nn or pp)





M

2

- 2) Fit with ONLY the np initial state varied
- Fit with ONLY the 1p1h state varied 3)

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Reconstructed available energy (GeV)

### **Double Differential QE-Like Results**



Anti-Neutrino Low Recoil E<sub>avail</sub>, q<sub>3</sub>

When applied to the Valencia 2p2h antineutrino cross section as a prediction the dip is better represented, but residual differences of >10% exist in the targeted region

Other regions, not targeted with this 2D Gaussian fit, show interesting differences across many samples. More work to do!

The neutron response in the anti-neutrino case is described in M. Elkins' poster



4 ω 0 C  $\mathcal{P}$ 05 C Ē Ē Π 03 C σ  $\mathbf{C}$ O C  $\infty$ Ο  $\bigcirc$ N 22  $\infty$ Ο 0 σ F 5501 3007 (2011) (2013)